Abstract
Global Navigation Satellite System (GNSS) products, including satellite orbit and clock corrections, ionospheric and tropospheric delay models, and multi-frequency data, are fundamental to modern geodesy and numerous scientific and industrial applications. The exploitation of these products facilitates the achievement of precise positioning, navigation, and timing (PNT) across a diverse range of fields, including transportation, geodesy, agriculture, and disaster management. Nevertheless, numerous challenges remain, including signal degradation due to multipath effects, atmospheric interference, and vulnerabilities to jamming and spoofing. Recent developments seek to address these limitations and enhance the utility of GNSS products. International collaboration, spearheaded by organizations such as the International GNSS Service (IGS), is crucial for standardizing and distributing GNSS products, facilitating global accessibility and addressing challenges such as climate monitoring and disaster resilience. This review emphasizes the indispensable role of GNSS products in advancing science and industry, highlights persistent challenges, and explores innovative solutions that promise to enhance their accuracy, resilience, and accessibility for addressing global needs.
Funding source: AGH University of Krakow
Award Identifier / Grant number: Statutory research
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: A.M. and K.M. conceived and designed the experiments; A.M. and K.M. performed the experiments; A.M. and K.M. analysed the data; A.M. and K.M. wrote the paper; A.M. and K.M. provided the resources. A.M. and K.M. read and improved the final manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: This work was supported by AGH University of Krakow.
-
Data availability: Not applicable.
Appendix A: Products derived by IGS [55]
| GPS satellite ephemerides/satellites & station clocks | |||||
|---|---|---|---|---|---|
| Type | Accuracy | Latency | Updates | Sample interval | |
| Broadcast | Orbits Sat. clocks | ∼100 cm ∼5 ns RMS, ∼2.5 ns SDev | Real time | – | Daily |
| Ultra-rapid (predicted half) | Orbits Sat. clocks | ∼5 cm ∼3 ns RMS, ∼1.5 ns SDev | Real time | At 03, 09, 15, 21 UTC | 15 min |
| Ultra-rapid (observed half) | Orbits Sat. clocks | ∼3 cm ∼150 ps RMS, ∼50 ps SDev | 3–9 h | At 03, 09, 15, 21 UTC | 15 min |
| Rapid | Orbits Sat. & stn. clocks | ∼2.5 cm ∼75 ps RMS, 25 ps SDev | 17–41 h | At 17 UTC daily | 15 min 5 min |
| Final | Orbits Sat. & stn. clocks | ∼2.5 cm ∼75 ps RMS, ∼25 ps SDev | 12–19 days | Every friday | 15 min Sat.: 30 s Stn.: 5 min |
| GLONASS satellite ephemerides | |||||
| Type | Accuracy | Latency | Updates | Sample interval | |
| Final | ∼3 cm | 12–19 days | Every friday | 15 min | |
| Geocentric coordinates of IGS tracking stations | |||||
| Type | Accuracy | Latency | Updates | Sample interval | |
| Daily positions | Horizontal Vertical | 2 mm 5 mm | 11–17 days | Every thursday | Daily |
| Long-term position & velocities | Horizontal Vertical | 2 mm/0.2 mm/yr 5 mm/0.5 mm/yr | n/a | Every 8 weeks | n/a |
| Earth rotation | |||||
| Type | Accuracy | Latency | Updates | Sample interval | |
| Ultra-rapid (predicted half) | PM PM rate LOD | ∼200 µas ∼300 µas/day ∼50 µas | Real time | At 03, 09, 15, 21 UTC | Daily integrations at 00, 06, 12, 18 UTC |
| Ultra-rapid (observed half) | PM PM rate LOD | ∼50 µas ∼250 µas/day ∼10 µas | 3–9 h | At 03, 09, 15, 21 UTC | Daily integrations at 00, 06, 12, 18 UTC |
| Rapid | PM PM rate LOD | ∼40 µas ∼200 µas/day ∼10 µas | 17–41 h | At 17 UTC | Daily integrations at 12 UTC |
| Final | PM PM rate LOD | ∼30 µas ∼150 µas/day ∼10 µas | 11–17 days | Every wednesday | Daily integrations at 12 UTC |
| Atmospheric parameters | |||||
| Type | Accuracy | Latency | Updates | Sample interval | |
| Final tropospheric zenith path delay with N, E gradients | 4 mm (ZPD) | <4 weeks | Daily | 5 min | |
| Final ionospheric TEC grid | 2–8 TECU | ∼11 days | Weekly | 2 h; 5 deg (lon) × 2.5 deg (lat) | |
| Rapid ionospheric TEC grid | 2–9 TECU | <24 h | Daily | 2 h; 5 deg (lon) × 2.5 deg (lat) | |
References
1. Kumar, P, Srivastava, PK, Tiwari, P, Mall, RK. Application of GPS and GNSS technology in geosciences. GPS GNSS Technol Geosci 2021:415–27. https://doi.org/10.1016/b978-0-12-818617-6.00018-4.Suche in Google Scholar
2. ESA. What is Galileo? 2024. https://www.esa.int/Applications/Satellite_navigation/Galileo/First_Galileo_Launch/What_is_Galileo.Suche in Google Scholar
3. Guerova, G, Simeonov, T. Global Navigation Satellite System (GNSS—GPS, GLONASS, Galileo). Global Navig Satell Syst Monit Atmos 2022:1–13.10.1016/B978-0-12-819152-1.00007-6Suche in Google Scholar
4. Government of Japan. Quazi-Zenith satellite system (QZSS) 2024 [Internet]. Available from: https://qzss.go.jp/en/.Suche in Google Scholar
5. Test and Assessment Research Center of China Satellite Navigation Office, 2024. BDS system status. Available from: https://www.csno-tarc.cn/en/.Suche in Google Scholar
6. Indian Space Research Organisation, 2024. IRNSS programme. Available from: https://www.isro.gov.in/IRNSS_Programme.html.Suche in Google Scholar
7. Qu, X, Shu, B, Ding, X, Lu, Y, Li, G, Wang, L. Experimental study of accuracy of high-rate GNSS in context of structural health monitoring. Remote Sens 2022;14:4989. https://doi.org/10.3390/rs14194989.Suche in Google Scholar
8. Wang, X, Zhao, Q, Xi, R, Li, C, Li, G, Li, L. Review of bridge structural health monitoring based on GNSS: from displacement monitoring to dynamic characteristic identification. IEEE Access 2021;9:80043–65. https://doi.org/10.1109/access.2021.3083749.Suche in Google Scholar
9. Guo, J, Li, X, Li, Z, Hu, L, Yang, G, Zhao, C, et al.. Multi-GNSS precise point positioning for precision agriculture. Precis Agric 2018;19:895–911. https://doi.org/10.1007/s11119-018-9563-8.Suche in Google Scholar
10. Basso, M, Martinelli, A, Morosi, S, Sera, F. A real-time GNSS/PDR navigation system for mobile devices. Remote Sens 2021;13:1567. https://doi.org/10.3390/rs13081567.Suche in Google Scholar
11. Chang, L, Niu, X, Liu, T, Tang, J, Qian, C. GNSS/INS/LiDAR-SLAM integrated navigation system based on graph optimization. Remote Sens 2019;11:1009. https://doi.org/10.3390/rs11091009.Suche in Google Scholar
12. Liang, K, Yang, Z, Fang, W, Wang, J. Performance characterization of network timing with remote traceability via GNSS time transfer. Meas Control 2023;56:1387–95. https://doi.org/10.1177/00202940231161568.Suche in Google Scholar
13. Zhu, L, Zhang, H, Li, X, Zhu, F, Liu, Y. GNSS timing performance assessment and results analysis. Sensors 2022;22:2486. https://doi.org/10.3390/s22072486.Suche in Google Scholar PubMed PubMed Central
14. Yue, X, Schreiner, WS, Pedatella, N, Anthes, RA, Mannucci, AJ, Straus, PR, et al.. Space weather observations by GNSS radio occultation: from FORMOSAT‐3/COSMIC to FORMOSAT‐7/COSMIC‐2. Space Weather 2014;12:616–21. https://doi.org/10.1002/2014sw001133.Suche in Google Scholar
15. Foelsche, U, Borsche, M, Steiner, AK, Gobiet, A, Pirscher, B, Kirchengast, G, et al.. Observing upper troposphere–lower stratosphere climate with radio occultation data from the CHAMP satellite. Clim Dyn 2008;31:49–65. https://doi.org/10.1007/s00382-007-0337-7.Suche in Google Scholar
16. Wickert, J, Cardellach, E, Martin-Neira, M, Bandeiras, J, Bertino, L, Andersen, OB, et al.. GEROS-ISS: GNSS REflectometry, radio occultation, and scatterometry onboard the international space station. IEEE J Sel Top Appl Earth Obs Rem Sens 2016;9:4552–81. https://doi.org/10.1109/jstars.2016.2614428.Suche in Google Scholar
17. Rodriguez-Alvarez, N, Munoz-Martin, JF, Morris, M. Latest advances in the Global Navigation Satellite System—reflectometry (GNSS-R) field. Remote Sens 2023;15:2157. https://doi.org/10.3390/rs15082157.Suche in Google Scholar
18. Dong, Z, Jin, S, Chen, G, Wang, P. Enhancing GNSS-R soil moisture accuracy with vegetation and roughness correction. Atmosphere (Basel) 2023;14:509. https://doi.org/10.3390/atmos14030509.Suche in Google Scholar
19. Foti, G, Gommenginger, C, Jales, P, Unwin, M, Shaw, A, Robertson, C, et al.. Spaceborne GNSS reflectometry for ocean winds: first results from the UK TechDemoSat-1 mission. Geophys Res Lett 2015;42:5435–41. https://doi.org/10.1002/2015gl064204.Suche in Google Scholar
20. Rodriguez-Alvarez, N, Bosch-Lluis, X, Camps, A, Vall-Llossera, M, Valencia, E, Marchan-Hernandez, JF, et al.. Soil moisture retrieval using GNSS-R techniques: experimental results over a bare soil field. IEEE Trans Geosci Remote Sens 2009;47:3616–24. https://doi.org/10.1109/tgrs.2009.2030672.Suche in Google Scholar
21. Lu, C, Chen, X, Liu, G, Dick, G, Wickert, J, Jiang, X, et al.. Real-time tropospheric delays retrieved from multi-GNSS observations and IGS real-time product streams. Remote Sens 2017;9:1317. https://doi.org/10.3390/rs9121317.Suche in Google Scholar
22. Douša, J, Václavovic, P, Zhao, L, Kačmařík, M. New adaptable all-in-one strategy for estimating advanced tropospheric parameters and using real-time orbits and clocks. Remote Sens 2018;10:232. https://doi.org/10.3390/rs10020232.Suche in Google Scholar
23. Lu, C, Li, X, Cheng, J, Dick, G, Ge, M, Wickert, J, et al.. Real-time tropospheric delay retrieval from multi-GNSS PPP ambiguity resolution: validation with final troposphere products and a numerical weather model. Remote Sens 2018;10:481. https://doi.org/10.3390/rs10030481.Suche in Google Scholar
24. García-Rigo, A, Monte, E, Hernández-Pajares, M, Juan, JM, Sanz, J, Aragón-Angel, A, et al.. Global prediction of the vertical total electron content of the ionosphere based on GPS data. Radio Sci 2011;46. https://doi.org/10.1029/2010rs004643.Suche in Google Scholar
25. Jakowski, N, Béniguel, Y, De Franceschi, G, Pajares, MH, Jacobsen, KS, Stanislawska, I, et al.. Monitoring, tracking and forecasting ionospheric perturbations using GNSS techniques. J Space Weather Space Clim 2012;2:A22. https://doi.org/10.1051/swsc/2012022.Suche in Google Scholar
26. Savchyn, I. Analysis of recent African tectonic plate system kinematics based on GNSS data. Acta Geodyn Geomater 2023:19–28. https://doi.org/10.13168/agg.2023.0003.Suche in Google Scholar
27. Serpelloni, E, Cavaliere, A, Martelli, L, Pintori, F, Anderlini, L, Borghi, A, et al.. Surface velocities and strain-rates in the euro-mediterranean region from massive GPS data processing. Front Earth Sci 2022;10. https://doi.org/10.3389/feart.2022.907897.Suche in Google Scholar
28. Richter, A, Ivins, E, Lange, H, Mendoza, L, Schröder, L, Hormaechea, JL, et al.. Crustal deformation across the southern patagonian icefield observed by GNSS. Earth Planet Sci Lett 2016;452:206–15. https://doi.org/10.1016/j.epsl.2016.07.042.Suche in Google Scholar
29. Gülal, E, Tiryakioǧlu, I, Erdoǧan, S, Aykut, NO, Baybura, T, Akpinar, B, et al.. Tectonic activity inferred from velocity field of GNSS measurements in Southwest of Turkey. Acta Geod Geophys 2013;48:109–21. https://doi.org/10.1007/s40328-012-0005-1.Suche in Google Scholar
30. Chen, J, Huang, Z, Li, R. Computation of satellite clock–ephemeris corrections using a priori knowledge for satellite-based augmentation system. GPS Solut 2017;21:663–73. https://doi.org/10.1007/s10291-016-0555-8.Suche in Google Scholar
31. EUSPA. What is 2024 [Internet]. Available from: https://www.euspa.europa.eu/eu-space-programme/egnos/what-sbas.Suche in Google Scholar
32. Lee, J. Global positioning/GPS. Int Encycl Hum Geogr 2009;1–12:548–55. https://doi.org/10.1016/b978-008044910-4.00035-3.Suche in Google Scholar
33. IGS. About the IGS, 2024. Available from: https://igs.org/about/ Suche in Google Scholar
34. Johnston, G, Riddell, A, Hausler, G. The international GNSS service. In: Teunissen, PJG, Montenbruck, O, editors. Springer handbook of Global Navigation Satellite Systems, [Internet]. Cham: Springer International Publishing; 2017:967–82 pp.10.1007/978-3-319-42928-1_33Suche in Google Scholar
35. Ansari, K, Corumluoglu, O, Panda, SK. Analysis of ionospheric TEC from GNSS observables over the Turkish region and predictability of IRI and SPIM models. Astrophys Space Sci 2017;362:65. https://doi.org/10.1007/s10509-017-3043-x.Suche in Google Scholar
36. Feltens, J. The international GPS service (IGS) ionosphere working group. Adv Space Res 2003;31:635–44. https://doi.org/10.1016/s0273-1177(03)00029-2.Suche in Google Scholar
37. Ferland, R, Piraszewski, M. The IGS-combined station coordinates, earth rotation parameters and apparent geocenter. J Geod 2009;83:385–92. https://doi.org/10.1007/s00190-008-0295-9.Suche in Google Scholar
38. Caporali, A, Zurutuza, J. Broadcast ephemeris with centimetric accuracy: test results for GPS, Galileo, beidou and glonass. Remote Sens 2021;13:4185. https://doi.org/10.3390/rs13204185.Suche in Google Scholar
39. Katsigianni, G, Loyer, S, Perosanz, F, Mercier, F, Zajdel, R, Sośnica, K. Improving Galileo orbit determination using zero-difference ambiguity fixing in a Multi-GNSS processing. Adv Space Res 2019;63:2952–63. https://doi.org/10.1016/j.asr.2018.08.035.Suche in Google Scholar
40. Prange, L, Orliac, E, Dach, R, Arnold, D, Beutler, G, Schaer, S, et al.. CODE’s five-system orbit and clock solution—the challenges of multi-GNSS data analysis. J Geod 2017;91:345–60. https://doi.org/10.1007/s00190-016-0968-8.Suche in Google Scholar
41. Uhlemann, M, Gendt, G, Ramatschi, M, Deng, Z. GFZ global multi-GNSS network and data processing results. Potsdat, Germany; 2015:673–9 pp. https://link.springer.com/chapter/10.1007/1345_2015_120.10.1007/1345_2015_120Suche in Google Scholar
42. Oleynik, EG, Mitrikas, VV, Revnivykh, SG, Serdukov, AI, Dutov, EN, Shiriaev, VF. High-accurate GLONASS orbit and clock determination for the assessment of system performance. In: Proceedings of the 19th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2006); 2006:2065–79 pp.Suche in Google Scholar
43. Bramanto, B, Theresia, R, Gumilar, I, Wibowo, ST. Performance of GNSS positioning in PPP mode using MADOCA precise products. Geod Geodyn 2024;15:642–51. https://doi.org/10.1016/j.geog.2024.05.006.Suche in Google Scholar
44. Wu, B, Hu, X, Li, H. SHA: the GNSS analysis center at SHAO. Guanzhou, China; 2012:213–21 pp. https://link.springer.com/book/10.1007/978-3-642-29193-7.10.1007/978-3-642-29175-3_19Suche in Google Scholar
45. Guo, J, Xu, X, Zhao, Q, Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: strategy, result validation, and comparison. J Geod 2016;90:143–59. https://doi.org/10.1007/s00190-015-0862-9.Suche in Google Scholar
46. IGS. MGEX data + products, 2024. Available from: https://igs.org/mgex/data-products Suche in Google Scholar
47. Liu, S, Yuan, Y, Guo, X, Wang, K, Xiao, G. Multi-GNSS precise point positioning with ambiguity resolution based on the decoupled clock model. Remote Sens 2024;16:2999. https://doi.org/10.3390/rs16162999.Suche in Google Scholar
48. Ren, X, Zhang, X, Xie, W, Zhang, K, Yuan, Y, Li, X. Global ionospheric modelling using multi-GNSS: BeiDou, Galileo, GLONASS and GPS. Sci Rep 2016;6:33499. https://doi.org/10.1038/srep33499.Suche in Google Scholar PubMed PubMed Central
49. Bahadur, B, Nohutcu, M. Comparative analysis of MGEX products for post-processing multi-GNSS PPP. Measurement 2019;145:361–9. https://doi.org/10.1016/j.measurement.2019.05.094.Suche in Google Scholar
50. Wang, N, Li, Z, Duan, B, Hugentobler, U, Wang, L. GPS and GLONASS observable-specific code bias estimation: comparison of solutions from the IGS and MGEX networks. J Geod 2020;94:74. https://doi.org/10.1007/s00190-020-01404-5.Suche in Google Scholar
51. Mansur, G, Sakic, P, Männel, B, Schuh, H. Multi-constellation GNSS orbit combination based on MGEX products. Adv Geosci 2020;50:57–64. https://doi.org/10.5194/adgeo-50-57-2020.Suche in Google Scholar
52. Maciuk, K, Lewińska, P. High-rate monitoring of satellite clocks using two methods of averaging time. Remote Sens 2019;11:2754. https://doi.org/10.3390/rs11232754.Suche in Google Scholar
53. Strasser, S, Mayer-Gürr, T, Zehentner, N. Processing of GNSS constellations and ground station networks using the raw observation approach. J Geod 2019;93:1045–57. https://doi.org/10.1007/s00190-018-1223-2.Suche in Google Scholar
54. Lutz, S, Beutler, G, Schaer, S, Dach, R, Jäggi, A. CODE’s new ultra-rapid orbit and ERP products for the IGS. GPS Solut 2016;20:239–50. https://doi.org/10.1007/s10291-014-0432-2.Suche in Google Scholar
55. IGS. IGS products, 2024. Available from: https://igs.org/products/.Suche in Google Scholar
56. Springer, TA, Hugentobler, U. IGS ultra rapid products for (Near-) real-time applications. Phys Chem Earth, Part A Solid Earth Geod 2001;26:623–8. https://doi.org/10.1016/s1464-1895(01)00111-9.Suche in Google Scholar
57. Chen, J, Gao, Y. Real-time ionosphere prediction based on IGS rapid products using long short-term memory deep learning. Navig J Inst Navig 2023;70:navi.581. https://doi.org/10.33012/navi.581.Suche in Google Scholar
58. Pustoshilov, AS, Tsarev, SP, Ushakov, YY, Ovchinnikova, EV. Anomalies in IGS ephemeris and clock products and their impact on the solution of navigation problems. Sib Aerosp J 2021;22:288–300. https://doi.org/10.31772/2712-8970-2021-22-2-288-300.Suche in Google Scholar
59. Kouba, J. A guide to using international GNSS service (IGS) products. Geol Surv Div Nat Resour 2009;6:34.Suche in Google Scholar
60. Gou, J, Rösch, C, Shehaj, E, Chen, K, Kiani Shahvandi, M, Soja, B, et al.. Modeling the differences between ultra-rapid and final orbit products of GPS satellites using machine-learning approaches. Remote Sens 2023;15:5585. https://doi.org/10.3390/rs15235585.Suche in Google Scholar
61. Manandhar, S, Meng, YS. Assessment of IGS ultra-rapid products for near real-time steering of UTC time scale in Singapore. Meas: Sens 2021;18:100194. https://doi.org/10.1016/j.measen.2021.100194.Suche in Google Scholar
62. Hadas, T, Teferle, FN, Kazmierski, K, Hordyniec, P, Bosy, J. Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time. GPS Solut 2017;21:1069–81. https://doi.org/10.1007/s10291-016-0595-0.Suche in Google Scholar
63. Lv, Y, Dai, Z, Zhao, Q, Yang, S, Zhou, J, Liu, J. Improved short-term clock prediction method for real-time positioning. Sensors 2017;17:1308. https://doi.org/10.3390/s17061308.Suche in Google Scholar PubMed PubMed Central
64. Kur, T, Dobslaw, H, Śliwińska, J, Nastula, J, Wińska, M, Partyka, A. Evaluation of selected short-term predictions of UT1-UTC and LOD collected in the second earth orientation parameters prediction comparison campaign. Earth Planets Space 2022;74:191. https://doi.org/10.1186/s40623-022-01753-9.Suche in Google Scholar
65. CDDIS. Broadcast ephemeris data. 2024. https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/broadcast_ephemeris_data.html.Suche in Google Scholar
66. Shen, H, Li, R, Li, S, Liu, J, Chen, X, Xu, J. Multi-GNSS broadcast ephemeris errors assessment and weight determination of different constellations for SPP. Adv Space Res 2024;74:2649–63. https://doi.org/10.1016/j.asr.2024.01.051.Suche in Google Scholar
67. Guo, X, Wang, L, Fu, W, Suo, Y, Chen, R, Sun, H. An optimal design of the broadcast ephemeris for LEO navigation augmentation systems. Geo-Spatial Inf Sci 2022;25:34–46. https://doi.org/10.1080/10095020.2021.2017760.Suche in Google Scholar
68. Shi, Y, Xu, T, Li, M, Wei, K, Wang, S, Wang, D. Real-time precise orbit determination of low earth orbit satellites based on GPS and BDS-3 PPP B2b service. Remote Sens 2024;16:833. https://doi.org/10.3390/rs16050833.Suche in Google Scholar
69. Kang, Z, Bettadpur, S, Save, H, Nagel, P. GPS-based precise orbit determination of LEO satellites using space-based double-differenced observations. J Astronaut Sci 2024;71:25. https://doi.org/10.1007/s40295-024-00444-9.Suche in Google Scholar
70. Kim, Y, Bang, H. Introduction to Kalman filter and its applications. In: Govaers, F, editor. Introduction and implementations of the Kalman filter. Rijeka: IntechOpen; 2018.10.5772/intechopen.80600Suche in Google Scholar
71. Lou, Y, Zhang, W, Wang, C, Yao, X, Shi, C, Liu, J. The impact of orbital errors on the estimation of satellite clock errors and PPP. Adv Space Res 2014;54:1571–80. https://doi.org/10.1016/j.asr.2014.06.012.Suche in Google Scholar
72. Qin, W, Ge, Y, Wang, W, Yang, X. An approach for mitigating PPP day boundary with clock stochastic model. In: IFCS-ISAF 2020 – joint conference of the IEEE international frequency control symposium and ieee international symposium on applications of ferroelectrics, proceedings; 2020:53–66 pp.10.1109/IFCS-ISAF41089.2020.9234857Suche in Google Scholar
73. Ouyang, C, Shi, J, Huang, Y, Guo, J, Xu, C. Evaluation of BDS-2 real-time orbit and clock corrections from four IGS analysis centers. Meas: J Int Meas Confed 2021;168:108441. https://doi.org/10.1016/j.measurement.2020.108441.Suche in Google Scholar
74. Szołucha, M, Kroszczyński, K, Kiliszek, D. Accuracy of precise point positioning (PPP) with the use of different international GNSS service (IGS) products and stochastic modelling. Geod Cartogr 2018;67:207. https://doi.org/10.24425/gac.2018.125472.Suche in Google Scholar
75. Li, X, Zhu, Y, Zheng, K, Yuan, Y, Liu, G, Xiong, Y. Precise orbit and clock products of Galileo, BDS and QZSS from MGEX since 2018: comparison and PPP validation. Remote Sens 2020;12:1415. https://doi.org/10.3390/rs12091415.Suche in Google Scholar
76. Jiao, G, Song, S. High-rate one-hourly updated ultra-rapid multi-GNSS satellite clock offsets estimation and its application in real-time precise point positioning. Remote Sens 2022;14:1257. https://doi.org/10.3390/rs14051257.Suche in Google Scholar
77. Huang, GW, Zhang, Q, Xu, GC. Real-time clock offset prediction with an improved model. GPS Solut 2014;18:95–104. https://doi.org/10.1007/s10291-013-0313-0.Suche in Google Scholar
78. Hu, C, Wang, Z. Improved strategies for BeiDou ultrarapid satellites’ clock bias prediction using BDS-2 and BDS-3 integrated processing. Math Probl Eng 2020;2020:1–16. https://doi.org/10.1155/2020/1804621.Suche in Google Scholar
79. Zhao, L, Dousa, J, Ye, S, Vaclavovic, P. A flexible strategy for handling the datum and initial bias in real-time GNSS satellite clock estimation. J Geod 2020;94:3. https://doi.org/10.1007/s00190-019-01328-9.Suche in Google Scholar
80. Jia, X, Zeng, T, Ruan, R, Mao, Y, Xiao, G. Atomic clock performance assessment of BeiDou-3 basic system with the noise analysis of orbit determination and time synchronization. Remote Sens 2019;11:2895. https://doi.org/10.3390/rs11242895.Suche in Google Scholar
81. Maciuk, K. Monitoring of Galileo on-board oscillators variations, disturbances & noises. Measurement 2019;147:106843. https://doi.org/10.1016/j.measurement.2019.07.071.Suche in Google Scholar
82. Ge, Y, Ding, S, Dai, P, Qin, WJ, Yang, X. Modeling and assessment of real-time precise point positioning timing with multi-GNSS observations. Meas Sci Technol 2020;31:22408–18. https://doi.org/10.1088/1361-6501/ab7790.Suche in Google Scholar
83. Li, W. Assessment of multi-GNSS precise orbit and clock products from different analysis centers based on precise point positioning. Acta Geodyn Geomater 2021;18:387–97. https://doi.org/10.13168/agg.2021.0027.Suche in Google Scholar
84. Lyu, D, Zeng, F, Ouyang, X, Yu, H. Enhancing multi-GNSS time and frequency transfer using a refined stochastic model of a receiver clock. Meas Sci Technol 2019;30:125016. https://doi.org/10.1088/1361-6501/ab2419.Suche in Google Scholar
85. Ge, Y, Zhou, F, Liu, T, Qin, WJ, Wang, S, Yang, X. Enhancing real-time precise point positioning time and frequency transfer with receiver clock modeling. GPS Solut 2019;23:20. https://doi.org/10.1007/s10291-018-0814-y.Suche in Google Scholar
86. Guo, W, Song, W, Niu, X, Lou, Y, Gu, S, Zhang, S, et al.. Foundation and performance evaluation of real-time GNSS high-precision one-way timing system. GPS Solut 2019;23:1–11. https://doi.org/10.1007/s10291-018-0811-1.Suche in Google Scholar
87. Alkanaani, H. Analytical study of static observation according to IGS products. Int J Eng Technol 2018;7:520–9.10.14419/ijet.v7i4.20.26412Suche in Google Scholar
88. Bogusz, J, Klos, A. On the significance of periodic signals in noise analysis of GPS station coordinates time series. GPS Solut 2016;20:655–64. https://doi.org/10.1007/s10291-015-0478-9.Suche in Google Scholar
89. He, Y, Nie, G, Wu, S, Li, H. Analysis and discussion on the optimal noise model of global GNSS long-term coordinate series considering hydrological loading. Remote Sens 2021;13:431. https://doi.org/10.3390/rs13030431.Suche in Google Scholar
90. Savchuk, S, Doskich, S, Gołda, P, Rurak, A. The seasonal variations analysis of permanent GNSS station time series in the central-east of Europe. Remote Sens 2023;15:1–18. https://doi.org/10.3390/rs15153858.Suche in Google Scholar
91. Ren, Y, Lian, L, Wang, J. Analysis of seismic deformation from global three-decade GNSS displacements: implications for a three-dimensional earth GNSS velocity field. Remote Sens 2021;13:3369. https://doi.org/10.3390/rs13173369.Suche in Google Scholar
92. Li, P, Hugentobler, U. Analysis on the representation of polar motion in GNSS applications. Harbin, China; 2018:377–87 pp. https://link.springer.com/book/10.1007/978-981-13-0014-1.10.1007/978-981-13-0014-1_32Suche in Google Scholar
93. Śliwińska-Bronowicz, J, Kur, T, Wińska, M, Dobslaw, H, Nastula, J, Partyka, A, et al.. Assessment of length-of-day and universal time predictions based on the results of the second earth orientation parameters prediction comparison campaign. J Geod 2024;98:22. https://doi.org/10.1007/s00190-024-01824-7.Suche in Google Scholar
94. Wei, E, Jin, S, Wan, L, Liu, W, Yang, Y, Hu, Z. High frequency variations of earth rotation parameters from GPS and GLONASS observations. Sensors 2015;15:2944–63. https://doi.org/10.3390/s150202944.Suche in Google Scholar PubMed PubMed Central
95. Wang, Q, Hu, C, Xu, T, Chang, G, Hernández Moraleda, A. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: derivation and real-time correction. Adv Space Res 2017;60:2855–70. https://doi.org/10.1016/j.asr.2017.09.022.Suche in Google Scholar
96. Michalczak, M, Ligas, M, Kudrys, J. Prediction of earth rotation parameters with the use of rapid products from IGS, code and GFZ data centres using Arima and kriging – a comparison. Artif Satell 2022;57:274–89. https://doi.org/10.2478/arsa-2022-0024.Suche in Google Scholar
97. Klemm, L, Thaller, D, Flohrer, C, Walenta, A, Ullrich, D, Hellmers, H. Consistently combined earth orientation parameters at BKG—extended by new VLBI intensives data. In: International Association of Geodesy Symposia, Springer, Berlin, Heidelberg; 2024.10.5194/egusphere-egu24-9457Suche in Google Scholar
98. Wang, C, Sang, J, Li, X, Zhang, P. Estimation of earth rotation parameters based on BDS-3 and discontinuous VLBI observations. Remote Sens 2024;16:333. https://doi.org/10.3390/rs16020333.Suche in Google Scholar
99. Wang, D, Luo, X, Wang, J, Gao, J, Zhang, T, Wu, Z, et al.. Global ionospheric model accuracy analysis using shipborne kinematic GPS data in the arctic Circle. Remote Sens 2019;11:2062. https://doi.org/10.3390/rs11172062.Suche in Google Scholar
100. Xia, P, Tong, M, Ye, S, Qian, J, Fangxin, H. Establishing a high-precision real-time ZTD model of China with GPS and ERA5 historical data and its application in PPP. GPS Solut 2023;27:2. https://doi.org/10.1007/s10291-022-01338-9.Suche in Google Scholar
101. Wang, G, Zhu, Y, An, Q, Wang, H, Su, X. An analysis of satellite multichannel differential code bias for BeiDou SPP and PPP. Remote Sens 2023;15:4470. https://doi.org/10.3390/rs15184470.Suche in Google Scholar
102. Liu, H, Ren, X, Xu, G. Investigating the performance of IGS real-time global ionospheric maps under different solar conditions. Remote Sens 2023;15:4661. https://doi.org/10.3390/rs15194661.Suche in Google Scholar
103. Zhang, L, Yao, Y, Peng, W, Shan, L, He, Y, Kong, J. Real-time global ionospheric map and its application in single-frequency positioning. Sensors 2019;19:1138. https://doi.org/10.3390/s19051138.Suche in Google Scholar PubMed PubMed Central
104. Ejigu, YG, Teferle, FN, Klos, A, Janusz, B, Hunegnaw, A. Monitoring and prediction of hurricane tracks using GPS tropospheric products. GPS Solut 2021;25:76. https://doi.org/10.1007/s10291-021-01104-3.Suche in Google Scholar
105. Barba, P, Ramírez-Zelaya, J, Jiménez, V, Rosado, B, Jaramillo, E, Moreno, M, et al.. Tropospheric and ionospheric modeling using GNSS time series in volcanic eruptions (La Palma, 2021) †. Eng Proc 2023;39.10.3390/engproc2023039047Suche in Google Scholar
106. Aichinger-Rosenberger, M, Brockmann, E, Crocetti, L, Soja, B, Moeller, G. Machine learning-based prediction of Alpine foehn events using GNSS troposphere products: first results for Altdorf, Switzerland. Atmos Meas Tech 2022;15:5821–39. https://doi.org/10.5194/amt-15-5821-2022.Suche in Google Scholar
107. Gu, S, Dang, Y, Wang, H, Wang, J, Ren, Z, Zhang, J. The effect of DCB correction on multi-system combination precise point positioning. Beijing, China; 2019:305–13 pp. https://link.springer.com/book/10.1007/978-981-13-7751-8.10.1007/978-981-13-7751-8_31Suche in Google Scholar
108. Wang, N, Yuan, Y, Li, Z, Montenbruck, O, Tan, B. Determination of differential code biases with multi-GNSS observations. J Geod 2016;90:209–28. https://doi.org/10.1007/s00190-015-0867-4.Suche in Google Scholar
109. Guo, F, Zhang, X, Wang, J. Timing group delay and differential code bias corrections for BeiDou positioning. J Geod 2015;89:427–45. https://doi.org/10.1007/s00190-015-0788-2.Suche in Google Scholar
110. Xue, J, Song, S, Zhu, W. Estimation of differential code biases for Beidou navigation system using multi-GNSS observations: how stable are the differential satellite and receiver code biases? J Geod 2016;90:309–21. https://doi.org/10.1007/s00190-015-0874-5.Suche in Google Scholar
111. Choi, BK, Sohn, DH, Lee, SJ. Correlation between ionospheric TEC and the DCB stability of GNSS receivers from 2014 to 2016. Remote Sens 2019;11:2657. https://doi.org/10.3390/rs11222657.Suche in Google Scholar
112. Shehata, AG, Zarzoura, FH, El-Mewafi, M. Assessing the influence of differential code bias and satellite geometry on GNSS ambiguity resolution through MANS-PPP software package. J Appl Geodesy 2023;18:1–20. https://doi.org/10.1515/jag-2023-0032.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Research using GNSS (Global Navigation Satellite System) products – a comprehensive literature review
- Original Research Articles
- Impact of baseline length on uncertainty in static relative GNSS positioning
- Advancing magnetometer calibration: a sequential tri-axis approach
- Application of GNSS-levelling for updating the base vertical network
- Spatiotemporal postseismic deformation due to the 2018 Palu-Donggala earthquake revealed the relative importance of viscoelastic relaxation and the afterslip distribution estimated from geodetic observations
- Evaluation of PPP software performance for TEC estimation using IRI-2020, CODE, COSMIC, and SWARM with GNSS data
- Evaluation of mobile mapping point clouds in the context of height difference estimation
- Automated gap and flush measurements between car parts assisted by a highly flexible and accurate robot system
- Comprehensive statistical analysis of scintillations on L-band signals from six GNSS constellations over low-latitude region
- Recent estimates of crustal deformation and land subsidence in the Nile Delta, Egypt using GNSS-PPP datasets over 2012–2024
- Influence of orbit and clock file diversity on GNSS ambiguity resolution
- The usefulness of the MAFA method for smartphone precise positioning
- Comparative analysis of pseudorange multipath mitigation performance using K-means and Fuzzy c-means clustering techniques
- Estimation of GPS-based ionospheric indices by GIX, SIDX, and ROTI during the St. Patrick’s Day geomagnetic storm event in the Indian low latitude region
- Post-midnight impact of ionospheric irregularities on GPS based kinematic precise point positioning
Artikel in diesem Heft
- Frontmatter
- Review
- Research using GNSS (Global Navigation Satellite System) products – a comprehensive literature review
- Original Research Articles
- Impact of baseline length on uncertainty in static relative GNSS positioning
- Advancing magnetometer calibration: a sequential tri-axis approach
- Application of GNSS-levelling for updating the base vertical network
- Spatiotemporal postseismic deformation due to the 2018 Palu-Donggala earthquake revealed the relative importance of viscoelastic relaxation and the afterslip distribution estimated from geodetic observations
- Evaluation of PPP software performance for TEC estimation using IRI-2020, CODE, COSMIC, and SWARM with GNSS data
- Evaluation of mobile mapping point clouds in the context of height difference estimation
- Automated gap and flush measurements between car parts assisted by a highly flexible and accurate robot system
- Comprehensive statistical analysis of scintillations on L-band signals from six GNSS constellations over low-latitude region
- Recent estimates of crustal deformation and land subsidence in the Nile Delta, Egypt using GNSS-PPP datasets over 2012–2024
- Influence of orbit and clock file diversity on GNSS ambiguity resolution
- The usefulness of the MAFA method for smartphone precise positioning
- Comparative analysis of pseudorange multipath mitigation performance using K-means and Fuzzy c-means clustering techniques
- Estimation of GPS-based ionospheric indices by GIX, SIDX, and ROTI during the St. Patrick’s Day geomagnetic storm event in the Indian low latitude region
- Post-midnight impact of ionospheric irregularities on GPS based kinematic precise point positioning