Startseite Automated gap and flush measurements between car parts assisted by a highly flexible and accurate robot system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Automated gap and flush measurements between car parts assisted by a highly flexible and accurate robot system

Fully automated gap measurement in agile car production
  • Tobias Schröder EMAIL logo und Volker Schwieger ORCID logo
Veröffentlicht/Copyright: 23. April 2025
Veröffentlichen auch Sie bei De Gruyter Brill
Journal of Applied Geodesy
Aus der Zeitschrift Journal of Applied Geodesy

Abstract

This research investigates the application of gap and flush measurements between structural car components as part of the quality assurance process in Mercedes-Benz production. The measuring tool, attached to a lightweight robot (LBR), is mounted on a driverless platform Kuka-Motion-Platform (KMP). The study collects measurement data during three critical production phases: car body construction, car varnishing, and body assembly. Throughout the entire production process, observing gap and flush values ensures the fulfilment of both functional and customer requirements. At the assembly line, two measurement approaches are used: Full Automatic Gap-Measuring Installations (SMA): These installations automatically measure gap and flush values. If errors are detected during measurement, the affected car bodies are diverted from the production lane. Hand-Held Instruments: Adjacent to the production line, two employees perform rework and repeat quality measurements to meet the required quality targets. Once corrections are successfully executed, the cars re-enter the production line. The study explores gap measurement using mobile measurement units (SME) in human-robot interaction (HRC). These mobile units, currently fixed in position, offer enhanced automation and flexibility within the production process. Future plans involve replacing the static SMA with systems like SME. Additionally, the research aims to develop a scalable and autonomous measuring system. Toward this goal, two main components from the SME the measurement devices and the LBR, are mounted on the KMP. The empirical determination of measurement device variance at the desired gap is achieved through propagation of uncertainty. In summary, this study contributes to the advancement of quality assurance practices in Mercedes-Benz car production by leveraging innovative measurement techniques and automation.


Corresponding author: Tobias Schröder, Institute of Engineering Geodesy (IIGS), University of Stuttgart & Mercedes-Benz Tech Innovation, Stuttgart, Germany, E-mail: 

Acknowledgments

I would like to thank the following people for the breathtaking support in this research project. Special thanks go to Matthias Hornung, as my second supervisor and mentor at the Mercedes-Benz plant. He left nothing unmentioned or undone to support me in the best way possible. I also owe a debt of gratitude for the massive support by my students Roman Buss, Matthias Rupp and Lukas Schröder. Thanks!

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The main author (Mr. Schröder) is employee of Mercedes-Benz Tech innovation. All other authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

  8. Patents: See Citation [26] (DE 10 2018 008 209 A1) and [17] (DE 10 2020 006 160 A1).

References

1. Mercedes-Benz AG. Figures. Stuttgart: Mercedes Benz AG; 2023.Suche in Google Scholar

2. NextSense. Calibri-Gap sensor for the manuel gap- and flushmeasurement; 2021. https://www.nextsense-worldwide.com/en/industries/automotive/portable-gap-flush-measurement-system.html [Accessed 24 Mar 2023].Suche in Google Scholar

3. Reichelt Chemietechnik. POM – polyoxymethylen; 2023. https://www.rct-online.de/de/RctGlossar/detail/id/17 [Accessed 24 Mar 2023].Suche in Google Scholar

4. Wenglor. Wenglor WeCat3D; 2023. https://www.wenglor.com/fileadmin/download/FLYER_CATALOG/EN/2D3D_TEC_BRO_2.PDF [Accessed 24 Mar 2023].Suche in Google Scholar

5. KUKA. LBR iiwa 14 data sheet. https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af377562ecaa/db_lbr_iiwa_de.pdf?rev=e5c0c450b4fb4ae9968149c574bb5a16&hash=72E5B7A39C06FDC258EB5A72CADA4847 [Accessed 24 Mar 2023].Suche in Google Scholar

6. Seitz, G, Jahn, G, Tiziani, HJ. Triangulationssensoren für Roboteranwendungen. In: Waidelich, W, editor. Laser/Optoelektronik in der Technik/laser/optoelectronics in Engineering; 1990.10.1007/978-3-642-48372-1_47Suche in Google Scholar

7. Hexagon. Leica T-Scan 5; 2024. https://hexagon.com/de/products/leica-t-scan-5 [Accessed 24 Jun 2024].Suche in Google Scholar

8. VW Zwickau Hexagon. Case study VW Zwickau Leica T-Scan; 2024. https://hexagon.com/-/media/project/one-web/master-site/mi/products-mi/leica-tprobe/vwsachsen_case-study_t-products_en.pdf [Accessed 24 Jun 2024].Suche in Google Scholar

9. Faro. Faro quatum max 3D max; 2024. https://media.faro.com/-/media/Project/FARO/FARO/FARO/Resources/1_BROCHURE/Quantum-Max-Brochure/Brochure_QuantumMax_3DM_DEU.pdf?rev=d8fe6c9782b34b6eb6b0124ef3ec9a3c [Accessed 24 Jun 2024].Suche in Google Scholar

10. Creaform. Innovatives laserscanninng im Mercedes-Benz Werk Polen; 2024. https://www.creaform3d.com/blog/de/innovatives-laserscanning-im-mercedes-benz-fertigungswerk-in-polen/ [Accessed 24 Jun 2024].Suche in Google Scholar

11. Creaform. Creaform HandySCAN Black+; 2024. https://get.creaform3d.com/de/lp-handyscan-3d/ [Accessed 24 Jun 2024].Suche in Google Scholar

12. Zeiss. Zeiss Caleno; 2024. https://www.zeiss.de/messtechnik/systeme/koordinatenmessgeraete/horizontalarm-messgeraete/caleno.html [Accessed 24 Jun 2024].Suche in Google Scholar

13. Mercedes-Benz AG. Expert interviews. Stuttgart: Mercedes Benz AG; 2023.Suche in Google Scholar

14. Spie-Escad. Logibot 250 Mir Doosan; 2024. https://www.spie-escad.de/logibot/ [Accessed 24 Jun 2024].Suche in Google Scholar

15. Schröder, T, Baumgartl, J, Schwieger, V. Qualitätssicherungssystem zur automatisierten Spalt- und Übergangsmessung am Ende einer Produktionslinie. In: DVW Schriftenreihe Band 101; 2022.Suche in Google Scholar

16. KUKA. KMP 200 data sheet; 2023. https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/kuka_kmriiwa_de.pdf [Accessed 24 Mar 2023].Suche in Google Scholar

17. Scheer, F, Neumann, M, Hornung, M, Wirth, K, Schröder, T. Verfahren zur Lageerkennung eines Objekts mittels eines Lageerfassungssystems, Verfahren zum Bearbeiten eines Objekts sowie Lageerfassungssystem. In: DE 10 2020 006 160 A1; 2020.Suche in Google Scholar

18. Siemens. Siemens IPC 427E; 2023. https://mall.industry.siemens.com/mall/de/WW/Catalog/Products/10290372t [Accessed 24 Mar 2023].Suche in Google Scholar

19. DVW. Merkbatt 12-2017 Standardabweichung vs. Toleranz; 2017. https://dvw.de/sites/default/files/merkblatt/daten/2017/12_DVW-Merkblatt_Stdabw_Toleranz.pdf [Accessed 24 Mar 2023].Suche in Google Scholar

20. Buss, R. Weiterentwicklung eines selbstfahrenden Messroboters für die Kontrolle von Spalt und Übergang an Karosserien [Masterthesis]; 2019. Unpublished.Suche in Google Scholar

21. IDS Imaging Development Systems GmbH. Industrial camera systems; 2021. https://de.ids-imaging.com/ [Accessed 24 Mar 2023].Suche in Google Scholar

22. Faro Europe GmbH & Co. KG. Faro arm, faro laser tracker; 2021. https://www.faro.com [Accessed 24 Mar 2023].Suche in Google Scholar

23. Scheer, F, Neumann, M, Wirth, K, Ginader, M, Oezkurt, Y, Mueller, S. Evaluation of model-based tracking and its application in a robotic production line. J WSCG 2020;28:71–8. https://doi.org/10.24132/JWSCG.2020.28.9.Suche in Google Scholar

24. Witte-Barskamp GmbH. Witte Alufix profiles. https://www.witte-barskamp.de/modulare-spannsysteme/alufix-classic-alufix-eco/ [Accessed 03 May 2024].Suche in Google Scholar

25. Luhmann, T. Nahbereichsphotogrammetrie: Grundlagen, Methoden und Anwendungen. Wichmann; 2010. https://www.researchgate.net/publication/255697142_Nahbereichsphotogrammetrie [Accessed 24 Mar 2023].Suche in Google Scholar

26. Baumgartl, J, Hornung, M, Huber, A, Lorenz, T, Nolle, D, Richter, K, et al.. Kalibrierverfahren für einen mobilen Roboter sowie mobiler Roboter. In: DE 10 2018 008 209 A1; 2019.Suche in Google Scholar

27. Rupp, M. Analyse der geometrischen Einflüsse auf eine Fahrzeugkarosserie, während der Oberflächenbehandlung durch statistische Verfahren [Bachelorthesis]; 2020. Unpublished.Suche in Google Scholar

Received: 2024-01-08
Accepted: 2025-03-17
Published Online: 2025-04-23

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jag-2024-0005/html
Button zum nach oben scrollen