Home Accuracy and reliability of BeiDou clocks
Article
Licensed
Unlicensed Requires Authentication

Accuracy and reliability of BeiDou clocks

  • Katarzyna Chwedczuk , Ciro Gioia , Bogdan Skorupa and Kamil Maciuk ORCID logo EMAIL logo
Published/Copyright: February 21, 2023
Become an author with De Gruyter Brill

Abstract

The subject of this paper is the analysis of the stability of BeiDou system clocks; currently only signals from two blocks, BSD-2 and BDS-3, are available. For elaboration, 30 s clock corrections from the 2014 to 2020 period for 37 satellites were used (9 IGSO, 28 MEO). Four different Allan variances were used to determine stability, and additionally, the type of noise characteristic for each satellite was also determined. Based on the calculations, it was shown that the BDS-2 segment has a significantly lower stability than BDS-3. Moreover, it was possible to notice a difference in the course of the graphs of the same satellites using different variances. BDS-2 satellites were mostly characterised by the presence of WFM noise, while BDS-3 satellites were characterised by WFM noise for the shortest averaging times and RWFM for the other intervals. Accuracy varies between 10−10 s to 10−6 s for a rubidium clocks in general, in case of the hydrogen masers in is between 10−14 s to 10−10 s.


Corresponding author: Kamil Maciuk, AGH University of Science and Technology, Mickiewicza 30, Krakow 30-059, Poland, E-mail:

Ciro Gioia's current afiliation: Freelance Researcher, Brebbia, Italy


Funding source: National Science Centre 2021/05/X/ST10/00058

Award Identifier / Grant number: MINIATURA 5

Funding source: AGH University of Science and Technology 16.16.150.545

Award Identifier / Grant number: Statutory Research

  1. Author contributions: Katarzyna Chwedczuk 45%, Ciro Gioia 5%, Bogdan Skorupa 5%, Kamil Maciuk 45%.

  2. Research funding: This work was funded by National Science Centre as part of MINIATURA 5, application No. 2021/05/X/ST10/00058, and by the Initiative for Excellence–Research University grant at AGH University of Science and Technology; and under scientific research 16.16.150.545.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix: BeiDou status (http://www.csno-tarc.cn/en/system/constellation, access date 02-09-2022).

PRNa SVNb Block NORAD IDc Clock type Launch date Status Service signal ADEV ODEV MDEV HDEV
01 GEO-8 BDS-2 44,231 Rubidium 2019-05-17 Operational B1I/B2I/B3I
02 GEO-6 BDS-2 38,953 Rubidium 2012-10-25 Operational B1I/B2I/B3I
03 GEO-7 BDS-2 41,586 Rubidium 2016-06-12 Operational B1I/B2I/B3I
04 GEO-4 BDS-2 37,210 Rubidium 2010-11-01 Operational B1I/B2I/B3I
05 GEO-5 BDS-2 38,091 Rubidium 2012-02-25 Operational B1I/B2I/B3I
06 IGSO-1 BDS-2 36,828 Rubidium 2010-08-01 Operational B1I/B2I/B3I WFM WFM WFM WFM
07 IGSO-2 BDS-2 37,256 Rubidium 2010-12-18 Operational B1I/B2I/B3I WFM WFM WFM WFM
08 IGSO-3 BDS-2 37,384 Rubidium 2011-04-10 Operational B1I/B2I/B3I WFM WFM WFM WFM
09 IGSO-4 BDS-2 37,763 Rubidium 2011-07-27 Operational B1I/B2I/B3I WFM WFM WFM WFM
10 IGSO-5 BDS-2 37,948 Rubidium 2011-12-02 Operational B1I/B2I/B3I WFM WFM WFM, RWFM WFM
11 MEO-3 BDS-2 38,250 Rubidium 2012-04-30 Operational B1I/B2I/B3I WFM WFM, RWFM WFM, RWFM WFM, RWFM
12 MEO-4 BDS-2 38,251 Rubidium 2012-04-30 Operational B1I/B2I/B3I WFM WFM, RWFM WFM, RWFM WFM, RWFM
13 IGSO-6 BDS-2 41,434 Rubidium 2016-03-30 Operational B1I/B2I/B3I WFM WFM, RWFM WFM, RWFM WFM, RWFM
14 MEO-6 BDS-2 38,775 Rubidium 2012-09-19 Operational B1I/B2I/B3I WFM WFM WFM, RWFM WFM
16 IGSO-7 BDS-2 43,539 Rubidium 2018-07-10 Operational B1I/B2I/B3I WFM, RWFM WFM, RWFM WFM, RWFM WFM, RWFM
19 MEO-1 BDS-3 43,001 Rubidium 2017-11-05 Operational B1I/B3I/B1C/B2a/B2b WFM WFM, RWFM WFM WFM, RWFM
20 MEO-2 BDS-3 43,002 Rubidium 2017-11-05 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM WFM
21 MEO-3 BDS-3 43,208 Rubidium 2018-02-12 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM WFM
22 MEO-4 BDS-3 43,207 Rubidium 2018-02-12 Operational B1I/B3I/B1C/B2a/B2b WFM WFM WFM WFM
23 MEO-5 BDS-3 43,581 Rubidium 2018-07-29 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM WFM
24 MEO-6 BDS-3 43,582 Rubidium 2018-07-29 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM, RWFM WFM
25 MEO-11 BDS-3 43,603 Hydrogen 2018-08-25 Operational B1I/B3I/B1C/B2a/B2b WFM WFM WFM WFM
26 MEO-12 BDS-3 43,602 Hydrogen 2018-08-25 Operational B1I/B3I/B1C/B2a/B2b WFM WFM, RWFM WFM, RWFM WFM, RWFM
27 MEO-7 BDS-3 43,107 Hydrogen 2018-01-12 Operational B1I/B3I/B1C/B2a/B2b WFM WFM, RWFM WFM, RWFM WFM, RWFM
28 MEO-8 BDS-3 43,108 Hydrogen 2018-01-12 Operational B1I/B3I/B1C/B2a/B2b WFM WFM WFM WFM
29 MEO-9 BDS-3 43,245 Hydrogen 2018-03-30 Operational B1I/B3I/B1C/B2a/B2b WFM WFM, RWFM WFM WFM, RWFM
30 MEO-10 BDS-3 43,246 Hydrogen 2018-03-30 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM, RWFM WFM
31 IGSO-1S BDS-3S 40,549 Hydrogen 2015-03-30 Experiment
32 MEO-13 BDS-3 43,622 Rubidium 2018-09-19 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM, RWFM WFM, RWFM WFM, RWFM
33 MEO-14 BDS-3 43,623 Rubidium 2018-09-19 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM WFM
34 MEO-15 BDS-3 43,648 Hydrogen 2018-10-15 Operational B1I/B3I/B1C/B2a/B2b WFM WFM, RWFM WFM WFM, RWFM
35 MEO-16 BDS-3 43,647 Hydrogen 2018-10-15 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM WFM
36 MEO-17 BDS-3 43,706 Rubidium 2018-11-19 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM WFM
37 MEO-18 BDS-3 43,707 Rubidium 2018-11-19 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM, RWFM WFM
38 IGSO-1 BDS-3 44,204 Hydrogen 2019-04-20 Operational B1I/B3I/B1C/B2a/B2b WFM WFM WFM WFM
39 IGSO-2 BDS-3 44,337 Hydrogen 2019-06-25 Operational B1I/B3I/B1C/B2a/B2b WFM WFM WFM, RWFM WFM
40 IGSO-3 BDS-3 44,709 Hydrogen 2019-11-05 Operational B1I/B3I/B1C/B2a/B2b WFM WFM, RWFM WFM WFM, RWFM
41 MEO-19 BDS-3 44,864 Hydrogen 2019-12-16 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM, RWFM WFM, RWFM WFM, RWFM
42 MEO-20 BDS-3 44,865 Hydrogen 2019-12-16 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM, RWFM WFM WFM, RWFM
43 MEO-21 BDS-3 44,794 Hydrogen 2019-11-23 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM, RWFM WFM WFM, RWFM
44 MEO-22 BDS-3 44,793 Hydrogen 2019-11-23 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM WFM, RWFM WFM
45 MEO-23 BDS-3 44,543 Rubidium 2019-09-23 Operational B1I/B3I/B1C/B2a/B2b WFM WFM WFM, RWFM WFM
46 MEO-24 BDS-3 44,542 Rubidium 2019-09-23 Operational B1I/B3I/B1C/B2a/B2b WFM, RWFM WFM, RWFM WFM WFM, RWFM
56 IGSO-2S BDS-3S 40,938 Hydrogen 2015-09-30 Experiment
57 MEO-1S BDS-3S 40,749 Rubidium 2015-07-25 Experiment
58 MEO-2S BDS-3S 40,748 Rubidium 2015-07-25 Experiment
59 GEO-1 BDS-3 43,683 Hydrogen 2018-11-01 Operational B1I/B3I
60 GEO-2 BDS-3 45,344 Hydrogen 2020-03-09 Operational B1I/B3I
61 GEO-3 BDS-3 45,807 Hydrogen 2020-06-23 Testing B1I/B3I
  1. Satellites C01-C05,C56-C61 were not analyzed due to either a lack of data or a very short period in orbit. aPseudorandom noise. bSpace vehicle number. cNORAD (North American Aerospace Defense) catalog number, NORAD ID.

References

1. Leśniewicz, M. Współczesne metody i układy generacji taktów zegarowych o wysokiej dokładności i stabilności oraz znikomym jitterze. Prz Elektrotech 2021;1:100–7. https://doi.org/10.15199/48.2021.07.20.Search in Google Scholar

2. Makles, P. Praktyczne układy kalibracji zegarów czasu rzeczywistego. Prz Elektrotechn 2020;1:32–6. https://doi.org/10.15199/48.2020.12.05.Search in Google Scholar

3. Wang, W, Liu, S, Wang, J, Lu, G. A calibration-based method for interval reliability analysis of the multi-manipulator system. Eksploat Niezawodn, Maint Reliab 2021;24:42–52. https://doi.org/10.17531/ein.2022.1.6.Search in Google Scholar

4. Maciuk, K. Aging of ground global navigation satellite system oscillators. Eksploat Niezawodn, Maint Reliab 2022;24:371–6. https://doi.org/10.17531/ein.2022.2.18.Search in Google Scholar

5. Hegarty, CJ, Chatre, E. Evolution of the global navigation SatelliteSystem (GNSS). Proc IEEE 2008;96:1902–17. https://doi.org/10.1109/JPROC.2008.2006090.Search in Google Scholar

6. Ziętala, M. Stability of GPS and GLONASS onboard clocks on a monthly basis. Sci J Sil Univ Technol, Series Transp 2022;114:193–209. https://doi.org/10.20858/sjsutst.2022.114.16.Search in Google Scholar

7. Delporte, J, Boulanger, C, Mercier, F. Short-term stability of GNSS on-board clocks using the polynomial method. In: 2012 european frequency and time forum. Gothenburg, Sweden: IEEE; 2012:117–21 pp.10.1109/EFTF.2012.6502347Search in Google Scholar

8. Zrinjski, M, Matika, K, Barković, Đ. Razvoj i modernizacija GNSS-a. Geod List 2019;73:45–65.Search in Google Scholar

9. Xia, Y, Pan, S, Zhao, Q, Wang, D, Gao, W. Characteristics and modelling of BDS satellite inter-frequency clock bias for triple-frequency PPP. Surv Rev 2020;52:38–48. https://doi.org/10.1080/00396265.2018.1511964.Search in Google Scholar

10. Montenbruck, O, Rizos, C, Weber, R, Weber, G, Neilan, R, Hugentobler, U. Getting a grip on multi-GNSS: the international GNSS service MGEX campaign. GPS World 2013;24:44–9.Search in Google Scholar

11. Zhou, S, Hu, X, Wu, B, Liu, L, Qu, W, Guo, R, et al.. Orbit determination and time synchronization for a GEO/IGSO satellite navigation constellation with regional tracking network. Sci China Phys Mech Astron 2011;54:1089–97. https://doi.org/10.1007/s11433-011-4342-9.Search in Google Scholar

12. Hein, GW. Status, perspectives and trends of satellite navigation. Sat Nav 2020;1:22. https://doi.org/10.1186/s43020-020-00023-x.Search in Google Scholar PubMed PubMed Central

13. Alessi, EM, Deleflie, F, Rosengren, AJ, Rossi, A, Valsecchi, GB, Daquin, J, et al.. A numerical investigation on the eccentricity growth of GNSS disposal orbits. Celestial Mech Dyn Astron 2016;125:71–90. https://doi.org/10.1007/s10569-016-9673-4.Search in Google Scholar

14. Mao, Y, Wang, QX, Hu, C, Yang, HY, Yang, X, Yu, WX. New clock offset prediction method for BeiDou satellites based on inter-satellite correlation. Acta Geod Geophys 2019;54:35–54. https://doi.org/10.1007/s40328-018-0242-z.Search in Google Scholar

15. Xu, X, Wang, X, Liu, J, Zhao, Q. Characteristics of BD3 global service satellites: POD, open service signal and atomic clock performance. Remote Sens 2019;11:1–17. https://doi.org/10.3390/rs11131559.Search in Google Scholar

16. Zhao, Q, Wang, C, Guo, J, Wang, B, Liu, J. Precise orbit and clock determination for BeiDou-3 experimental satellites with yaw attitude analysis. GPS Solut 2018;22:4. https://doi.org/10.1007/s10291-017-0673-y.Search in Google Scholar

17. Guo, W, Song, W, Niu, X, Lou, Y, Gu, S, Zhang, S, et al.. Foundation and performance evaluation of real-time GNSS high-precision one-way timing system. GPS Solut 2019;23:1–11. https://doi.org/10.1007/s10291-018-0811-1.Search in Google Scholar

18. Huang, G, Cui, B, Xu, Y, Zhang, Q. Characteristics and performance evaluation of Galileo on-orbit satellites atomic clocks during 2014–2017. Adv Space Res 2019;63:2899–911. https://doi.org/10.1016/j.asr.2018.01.034.Search in Google Scholar

19. Ge, Y, Ding, S, Dai, P, Qin, WJ, Yang, X. Modeling and assessment of real-time precise point positioning timing with multi-GNSS observations. Meas Sci Technol 2020;31:22408–18. https://doi.org/10.1088/1361-6501/ab7790.Search in Google Scholar

20. Krasuski, K, Ciećko, A, Wierzbicki, D. Accuracy analysis of aircraft positioning using GPS dual receivers in aerial navigation. Sci J Sil Univ Technol, Series Transp 2022;115:23–34. https://doi.org/10.20858/sjsutst.2022.115.2.Search in Google Scholar

21. Gu, S, Mao, F, Gong, X, Lou, Y, Xu, X, Zhou, Y. Evaluation of bds-2 and bds-3 satellite atomic clock products and their effects on positioning. Remote Sens 2021;13:5041. https://doi.org/10.3390/rs13245041.Search in Google Scholar

22. Lv, Y, Geng, T, Zhao, Q, Xie, X, Zhou, R. Initial assessment of BDS-3 preliminary system signal-in-space range error. GPS Solut 2020;24:1–13. https://doi.org/10.1007/s10291-019-0928-x.Search in Google Scholar

23. Ge, H, Li, B, Wu, T, Jiang, S. Prediction models of GNSS satellite clock errors: evaluation and application in PPP. Adv Space Res 2021;68:2470–87. https://doi.org/10.1016/j.asr.2021.05.025.Search in Google Scholar

24. Zhou, Jiang, Chen, Li, Liu. Improving the GRACE kinematic precise orbit determination through modified clock estimating. Sensors 2019;19:4347. https://doi.org/10.3390/s19194347.Search in Google Scholar PubMed PubMed Central

25. Chen, L, Zhao, Q, Hu, Z, Jiang, X, Geng, C, Ge, M, et al.. GNSS global real-time augmentation positioning: real-time precise satellite clock estimation, prototype system construction and performance analysis. Adv Space Res 2018;61:367–84. https://doi.org/10.1016/j.asr.2017.08.037.Search in Google Scholar

26. Yan, C, Wang, Q, Zhang, Y, Ke, F, Gao, W, Yang, Y. Analysis of GNSS clock prediction performance with different interrupt intervals and application to real-time kinematic precise point positioning. Adv Space Res 2020;65:978–96. https://doi.org/10.1016/j.asr.2019.10.017.Search in Google Scholar

27. Hu, C, Wang, Z. Improved strategies for BeiDou ultrarapid satellites’ clock bias prediction using BDS-2 and BDS-3 integrated processing. Math Probl Eng 2020;2020:1–16. https://doi.org/10.1155/2020/1804621.Search in Google Scholar

28. Sesia, I, Tavella, P. Estimating the Allan variance in the presence of long periods of missing data and outliers. Metrologia 2008;45:S134–42. https://doi.org/10.1088/0026-1394/45/6/S19.Search in Google Scholar

29. Formichella, V, Camparo, J, Tavella, P. Atomic clocks and the continuous-time random-walk. Eur Phys J B 2017;90:206. https://doi.org/10.1140/epjb/e2017-80272-7.Search in Google Scholar

30. Lyu, D, Zeng, F, Ouyang, X, Yu, H. Enhancing multi-GNSS time and frequency transfer using a refined stochastic model of a receiver clock. Meas Sci Technol 2019;30:125016. https://doi.org/10.1088/1361-6501/ab2419.Search in Google Scholar

31. Riley, WJ. Handbook of frequency stability analysis. Gaithersburg, MD, USA: national Institute of Standards and Technology (NIST); 2008.Search in Google Scholar

Received: 2022-09-22
Accepted: 2023-02-08
Published Online: 2023-02-21
Published in Print: 2023-07-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jag-2022-0037/html
Scroll to top button