Home Short-term analysis of internal and external CORS clocks
Article
Licensed
Unlicensed Requires Authentication

Short-term analysis of internal and external CORS clocks

  • Kamil Maciuk ORCID logo EMAIL logo
Published/Copyright: April 24, 2020
Become an author with De Gruyter Brill

Abstract

The International GNSS Service (IGS) provides high-accuracy clock products for both GNSS satellites and stations. On board of each GNSS satellite are located 3–4 atomic oscillators. In the case of CORS oscillators, the majority of them are equipped with internal oscillators and a part uses external, high-rate clocks. In the IGS network there are four types of external oscillators: quartz, rubidium, caesium and H-maser. These CORS are often reference stations for precise GNSS measurements or for time transfer. In this paper the author provides analyses of the internal and external stability of the reference stations oscillators via the usage of Allan variations. The results show a strong advantage of the external clocks over internal ones by about five orders of magnitude.

Acknowledgment

This paper was made within statutory research 16.16.150.545.

References

[1] X. Liu, C. Tiberius, K. de Jong, Modelling of differential single difference receiver clock bias for precise positioning, GPS Solut. 7 (2004) 209–221. https://doi.org/10.1007/s10291-003-0079-x.10.1007/s10291-003-0079-xSearch in Google Scholar

[2] A. El-Mowafy, M. Deo, N. Kubo, Maintaining real-time precise point positioning during outages of orbit and clock corrections, GPS Solut. (2016) 1–11. https://doi.org/10.1007/s10291-016-0583-4.10.1007/s10291-016-0583-4Search in Google Scholar

[3] T. Hadas, J. Bosy, IGS RTS precise orbits and clocks verification and quality degradation over time, GPS Solut. 19 (2014) 93–105. https://doi.org/10.1007/s10291-014-0369-5.10.1007/s10291-014-0369-5Search in Google Scholar

[4] A. Hauschild, O. Montenbruck, P. Steigenberger, Short-term analysis of GNSS clocks, GPS Solut. 17 (2013) 295–307. https://doi.org/10.1007/s10291-012-0278-4.10.1007/s10291-012-0278-4Search in Google Scholar

[5] P. Defraigne, Q. Baire, Combining GPS and GLONASS for time and frequency transfer, Adv. Sp. Res. 47 (2011) 265–275. https://doi.org/10.1016/j.asr.2010.07.003.10.1109/FCS.2011.5977889Search in Google Scholar

[6] G. Sharma, P.K. Champati ray, S. Mohanty, S. Kannaujiya, Ionospheric TEC modelling for earthquakes precursors from GNSS data, Quat. Int. 462 (2017) 65–74. https://doi.org/10.1016/j.quaint.2017.05.007.10.1016/j.quaint.2017.05.007Search in Google Scholar

[7] R. Krzyżek, J. Uchański, P. Falkowski, The SWSC Compilation Algorithm enhancing the reliability and accuracy of determining rectangular co-ordinates of corners of building structures with photogrammetric method, Measurement 110 (2017) 154–165. https://doi.org/10.1016/j.measurement.2017.06.016.10.1016/j.measurement.2017.06.016Search in Google Scholar

[8] S. Nistor, A.S. Buda, GPS network noise analysis: a case study of data collected over an 18-month period, J. Spat. Sci. 61 (2016) 427–440. https://doi.org/10.1080/14498596.2016.1138900.10.1080/14498596.2016.1138900Search in Google Scholar

[9] S. Nistor, A.S. Buda, The influence of different types of noise on the velocity uncertainties in GPS time series analysis, Acta Geodyn. Geomater. 13 (2016) 387–394. https://doi.org/10.13168/AGG.2016.0021.10.13168/AGG.2016.0021Search in Google Scholar

[10] A. Kampczyk, Magnetic-Measuring Square in the Measurement of the Circular Curve of Rail Transport Tracks, Sensors 20 (2020) 560. https://doi.org/10.3390/s20020560.10.3390/s20020560Search in Google Scholar PubMed PubMed Central

[11] A. Kampczyk, Geodäsie im Investitionsbauprozess auf den Bahngebieten in Polen, Bautechnik 91 (2014) 409–413. https://doi.org/10.1002/bate.201300105.10.1002/bate.201300105Search in Google Scholar

[12] A. Kampczyk, Technical specifications for interoperability and the provisions of Polish design geometry of the railway line, Bauingenieur 90 (2015) 229–234.10.37544/0005-6650-2015-05-71Search in Google Scholar

[13] P. Lewińska, R. Matula, A. Dyczko, Integration of Thermal Digital 3D Model and a MASW (Multichannel Analysis of Surface Wave) as a Means of Improving Monitoring of Spoil Tip Stability, in: 2017 Balt. Geod. Congr. (BGC Geomatics), IEEE, 2017: pp. 232–236. https://doi.org/10.1109/BGC.Geomatics.2017.29.10.1109/BGC.Geomatics.2017.29Search in Google Scholar

[14] A. Kukulska-Kozieł, M. Szylar, K. Cegielska, T. Noszczyk, J. Hernik, K. Gawroński, R. Dixon-Gough, S. Jombach, I. Valánszki, K. Filepné Kovács, Towards three decades of spatial development transformation in two contrasting post-Soviet cities—Kraków and Budapest, Land Use Policy 85 (2019) 328–339. https://doi.org/10.1016/j.landusepol.2019.03.033.10.1016/j.landusepol.2019.03.033Search in Google Scholar

[15] A. Głowacka, T. Noszczyk, J. Taszakowski, J. Hernik, Socio-spatial conflicts caused by an unfavourable rural structure and out-of-date Land and Property Register, Environ. Socio-Economic Stud. 5 (2017) 37–45. https://doi.org/10.1515/environ-2017-0004.10.1515/environ-2017-0004Search in Google Scholar

[16] J. Ray, K. Senior, Geodetic techniques for time and frequency comparisons using GPS phase and code measurements, Metrologia 42 (2005) 215–232. https://doi.org/10.1088/0026-1394/42/4/005.10.1088/0026-1394/42/4/005Search in Google Scholar

[17] K. Maciuk, P. Lewińska, High-Rate Monitoring of Satellite Clocks Using Two Methods of Averaging Time, Remote Sens. 11 (2019) 2754. https://doi.org/10.3390/rs11232754.10.3390/rs11232754Search in Google Scholar

[18] J. Li, J. Zhang, Y. Bu, C. Cao, W. Wang, H. Zheng, Space passive hydrogen maser a passive hydrogen maser for space applications, in: 2016 IEEE Int. Freq. Control Symp., IEEE, 2016: pp. 1–5. https://doi.org/10.1109/FCS.2016.7546720.10.1109/FCS.2016.7546720Search in Google Scholar

[19] C. Bruyninx, P. Defraigne, J.M. Sleewaegen, Time and Frequency Transfer Using GPS Codes and Carrier Phases: Onsite Experiments, GPS Solut. 3 (1999) 1–10. https://doi.org/10.1007/PL00012786.10.1007/PL00012786Search in Google Scholar

[20] P. Enge, T. Walter, S. Pullen, C. Kee, Y.-C. Chao, Y.-J. Tsai, Wide area augmentation of the Global Positioning System, Proc. IEEE 84 (1996) 1063–1088. https://doi.org/10.1109/5.533954.10.1109/5.533954Search in Google Scholar

[21] T.-K. Yeh, C. Hwang, G. Xu, C.-S. Wang, C.-C. Lee, Determination of global positioning system (GPS) receiver clock errors: impact on positioning accuracy, Meas. Sci. Technol. 20 (2009) 075105. https://doi.org/10.1088/0957-0233/20/7/075105.10.1088/0957-0233/20/7/075105Search in Google Scholar

[22] A. Hesselbarth, L. Wanninger, Short-term stability of GNSS satellite clocks and its effect on Precise Point Positioning, in: Proc. ION GNSS 2008, 2008: pp. 1855–1863.Search in Google Scholar

[23] J. Kouba, J. Popelar, Modern geodetic reference frames for precise satellite positioning and navigation, in: Proc. Inter. Symp. Kinematic Syst. Geod. Geomatics Navig. (KIS 94), 1994: pp. 79–85.Search in Google Scholar

[24] G. Beutler, A.W. Moore, I.I. Mueller, The international global navigation satellite systems service (IGS): development and achievements, J. Geod. 83 (2009) 297–307. https://doi.org/10.1007/s00190-008-0268-z.10.1007/s00190-008-0268-zSearch in Google Scholar

[25] H. Li, J. Xiao, W. Zhu, Investigation and Validation of the Time-Varying Characteristic for the GPS Differential Code Bias, Remote Sens. 11 (2019) 428. https://doi.org/10.3390/rs11040428.10.3390/rs11040428Search in Google Scholar

[26] K. Chen, T. Xu, Y. Yang, Robust combination of IGS analysis center GLONASS clocks, GPS Solut. 21 (2017) 1251–1263. https://doi.org/10.1007/s10291-017-0610-0.10.1007/s10291-017-0610-0Search in Google Scholar

[27] P. Daly, I.D. Kitching, D.W. Allan, T.K. Peppler, Frequency and time stability of GPS and GLONASS clocks, in: 44th Annu. Symp. Freq. Control, IEEE, 1991: pp. 127–139. https://doi.org/10.1109/FREQ.1990.177490.10.1109/FREQ.1990.177490Search in Google Scholar

[28] Z. Wu, S. Zhou, X. Hu, L. Liu, T. Shuai, Y. Xie, C. Tang, J. Pan, L. Zhu, Z. Chang, Performance of the BDS3 experimental satellite passive hydrogen maser, GPS Solut. 22 (2018) 1–13. https://doi.org/10.1007/s10291-018-0706-1.10.1007/s10291-018-0706-1Search in Google Scholar

[29] C. Han, Z. Cai, Relativistic effects to the onboard BeiDou satellite clocks, Navig. J. Inst. Navig. 66 (2019) 49–53. https://doi.org/10.1002/navi.294.10.1002/navi.294Search in Google Scholar

[30] Y. Lv, T. Geng, Q. Zhao, J. Liu, Characteristics of BeiDou-3 Experimental Satellite Clocks, Remote Sens. 10 (2018) 1847. https://doi.org/10.3390/rs10111847.10.3390/rs10111847Search in Google Scholar

[31] D. Svehla, Noise Model of the Galileo “mm-Clock”, in: Geom. Theory Satell. Orbits Gravity F., Springer International Publishing, Cham, 2018: p. 422. https://doi.org/10.1007/978-3-319-76873-1.10.1007/978-3-319-76873-1Search in Google Scholar

[32] O. Montenbruck, A. Hauschild, S. Häberling, B. Braun, G. Katsigianni, U. Hugentobler, High-rate clock variations of the Galileo IOV-1/2 satellites and their impact on carrier tracking by geodetic receivers, GPS Solut. 21 (2017) 43–52. https://doi.org/10.1007/s10291-015-0503-z.10.1007/s10291-015-0503-zSearch in Google Scholar

[33] J. Pratt, P. Axelrad, K.M. Larson, B. Lesage, R. Gerren, N. DiOrio, Satellite clock bias estimation for iGPS, GPS Solut. 17 (2013) 381–389. https://doi.org/10.1007/s10291-012-0286-4.10.1007/s10291-012-0286-4Search in Google Scholar

[34] D.W. Allan, Time and Frequency (Time-Domain) Characterization, Estimation, and Prediction of Precision Clocks and Oscillators, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 34 (1987) 647–654. https://doi.org/10.1109/T-UFFC.1987.26997.10.1109/T-UFFC.1987.26997Search in Google Scholar PubMed

[35] D.W. Allan, H. Hellwig, P. Kartaschoff, J. Vanier, J. Vig, G.M.R. Winkler, N. Yannoni, Standard terminology for fundamental frequency and time metrology, in: Proc. 42nd Annu. Freq. Control Symp. 1988, IEEE, 1988: pp. 419–425. https://doi.org/10.1109/FREQ.1988.27634.10.1109/FREQ.1988.27634Search in Google Scholar

[36] K. Maciuk, Satellite clock stability analysis depending on the reference clock type, Arab. J. Geosci. 12 (2019) 28. https://doi.org/10.1007/s12517-018-4069-2.10.1007/s12517-018-4069-2Search in Google Scholar

Received: 2020-02-21
Accepted: 2020-04-07
Published Online: 2020-04-24
Published in Print: 2020-07-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jag-2020-0011/html
Scroll to top button