Startseite Progress towards a rigorous error propagation for total least-squares estimates
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Progress towards a rigorous error propagation for total least-squares estimates

  • Burkhard Schaffrin und Kyle Snow EMAIL logo
Veröffentlicht/Copyright: 3. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

After several attempts at a formal derivation of the dispersion matrix for Total Least-Squares (TLS) estimates within an Errors-In-Variables (EIV) Model, here a refined approach is presented that makes rigorous use of the nonlinear normal equations, though assuming a Kronecker product structure for both observational dispersion matrices at this point. In this way, iterative linearization of a model (that can be established as being equivalent to the original EIV-Model) is avoided, which might be preferred since such techniques are based on the last iteration step only and, therefore, produce dispersion matrices for the estimated parameters that are generally too optimistic. Here, the error propagation is based on the (linearized total differential of the) exact nonlinear normal equations, which should lead to more trustworthy measures of precision.

References

[1] Amiri-Simkooei, A. and Jazaeri, S. (2012). Weighted Total Least-Squares formulated by standard Least-Squares theory. Journal of Geodetic Science, 2(2):113–124.10.2478/v10156-011-0036-5Suche in Google Scholar

[2] Amiri-Simkooei, A. R., Zangeneh-Nejad, F., and Asgari, J. (2016). On the Covariance Matrix of Weighted Total Least-Squares Estimates. Journal of Surveying Engineering, 142(3):04015014.10.1061/(ASCE)SU.1943-5428.0000153Suche in Google Scholar

[3] Haneberg, W. (2004). Computational Geosciences with Mathematica. Springer, Berlin/Heidelberg.10.1007/978-3-642-18554-0Suche in Google Scholar

[4] Hardy, Y. and Steeb, W. (2019). Matrix Calculus, Kronecker Product, and Tensor Product. World Scientific Publishing Company Pte Limited, Singapore, third edition.10.1142/11338Suche in Google Scholar

[5] Harville, D. A. (1986). Using ordinary least-squares software to compute combined intra-interblock estimates of treatment contrasts. The American Statistician, 40(2):153–157.10.1080/00031305.1986.10475382Suche in Google Scholar

[6] Henderson, H. V. and Searle, S. R. (1981). The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear and Multilinear Algebra, 9(4):271–288.10.1080/03081088108817379Suche in Google Scholar

[7] Magnus, J. R. and Neudecker, H. (1979). The commutation matrix: Some properties and applications. Ann. Statist., 7(2):381–394.10.1214/aos/1176344621Suche in Google Scholar

[8] Neitzel, F. and Petrovic, S. (2008). Total Least-Squares (TLS) im Kontext der Ausgleichung nach kleinsten Quadraten am Beispiel der ausgleichenden Geraden (Total Least-Squares in the context of least-squares adjustment of a straight line). Z. für Vermessungswesen, 133:141–148.Suche in Google Scholar

[9] Niemeier, W. (2008). Adjustment Computations (in German). de Gruyter, Berlin/New York, second edition.Suche in Google Scholar

[10] Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. Philosophical Magazine Series 6, 2(11):559–572.10.1080/14786440109462720Suche in Google Scholar

[11] Reinking, J. (2008). Total Least Squares? Z. für Vermessungswessen, 133(6):384–389.Suche in Google Scholar

[12] Schaffrin, B. (2007). Connecting the dots: The straight-line case revisited. Z. für Vermessungswesen, 132:385–394.Suche in Google Scholar

[13] Schaffrin, B. (2015). Adjusting the Errors-In-Variables model: Linearized least-squares vs. nonlinear total least-squares. In Sneeuw, N., Novák, P., Crespi, M., and Sansò, F., editors, VIII Hotine-Marussi Symposium on Mathematical Geodesy, Cham. Springer International Publishing, IAG Symp. Vol. 142, pages 301–307.10.1007/1345_2015_61Suche in Google Scholar

[14] Schaffrin, B., Lee, I., Felus, Y., and Choi, Y. (2006). Total Least-Squares (TLS) for geodetic straight-line and plane adjustment. Bollettino di Geodesia e Scienze Affini, 65(3):141–168.Suche in Google Scholar

[15] Schaffrin, B. and Snow, K. (2010). Total Least-Squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Algebra and its Applications, 432(8):2061–2076.10.1016/j.laa.2009.09.014Suche in Google Scholar

[16] Schaffrin, B. and Snow, K. (2014). The case of the Homogenous Errors-In-Variables Model. Journal of Geodetic Science, 4:166–173.10.2478/jogs-2014-0004Suche in Google Scholar

[17] Schaffrin, B. and Snow, K. (2019). Towards a more rigorous error propagation within the Errors-In-Variables Model for applications in geodetic networks. In 4th Joint International Symposium on Deformation Monitoring (JISDM 2019), Athens/Greece. Electronic proceedings only.Suche in Google Scholar

[18] Schaffrin, B. and Wieser, A. (2008). On weighted total least-squares adjustment for linear regression. Journal of Geodesy, 82(7):415–421.10.1007/s00190-007-0190-9Suche in Google Scholar

[19] Wang, L. and Zhao, Y. (2019). Second-order approximation function method for precision estimation of Total Least Squares. Journal of Surveying Engineering, 145(1):04018011.10.1061/(ASCE)SU.1943-5428.0000266Suche in Google Scholar

Published Online: 2020-04-03
Published in Print: 2020-04-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jag-2019-0062/html
Button zum nach oben scrollen