Home Contribution of satellite altimetry in modelling Moho density contrast in oceanic areas
Article
Licensed
Unlicensed Requires Authentication

Contribution of satellite altimetry in modelling Moho density contrast in oceanic areas

  • M. Abrehdary EMAIL logo , L. E. Sjöberg and D. Sampietro
Published/Copyright: October 19, 2018
Become an author with De Gruyter Brill

Abstract

The determination of the oceanic Moho (or crust-mantle) density contrast derived from seismic acquisitions suffers from severe lack of data in large parts of the oceans, where have not yet been sufficiently covered by such data. In order to overcome this limitation, gravitational field models obtained by means of satellite altimetry missions can be proficiently exploited, as they provide global uniform information with a sufficient accuracy and resolution for such a task. In this article, we estimate a new Moho density contrast model named MDC2018, using the marine gravity field from satellite altimetry in combination with a seismic-based crustal model and Earth’s topographic/bathymetric data. The solution is based on the theory leading to Vening Meinesz-Moritz’s isostatic model. The study results in a high-accuracy Moho density contrast model with a resolution of 1° × 1° in oceanic areas. The numerical investigations show that the estimated density contrast ranges from 14.2 to 599.7 kg/m3 with a global average of 293 kg/m3. In order to evaluate the accuracy of the MDC2018 model, the result was compared with some published global models, revealing that our altimetric model is able to image rather reliable information in most of the oceanic areas. However, the differences between this model and the published results are most notable along the coastal and polar zones, which are most likely due to that the quality and coverage of the satellite altimetry data are worsened in these regions.

References

[1] Abrehdary, M.; Sjöberg, L.E.; Bagherbandi, M.; Sampietro, D. Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations. Journal of Applied Geodesy, 2017, 11(4), 231–247.10.1515/jag-2017-0019Search in Google Scholar

[2] Abrehdary, M.; Sjöberg, L.E.; Bagherbandi, M. Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz–Moritz’method. Acta Geodaetica et Geophysica, 2015a, 51(2), 137–149.10.1007/s40328-015-0116-6Search in Google Scholar

[3] Abrehdary, M.; Sjöberg, L.E.; Bagherbandi, M. Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model. Journal of Earth Science, 2015b, 26(4), 607–616.10.1007/s12583-015-0571-6Search in Google Scholar

[4] Abrehdary, M. Recovering Moho parameters using gravimetric and seismic data, Doctoral dissertation. 2016, KTH Royal Institute of Technology.Search in Google Scholar

[5] Aitken, A.; Salmon, M.; Kennett, B. Australia’s Moho: A test of usefulness of gravity modelling for the determination of Moho depth. Tectonophysics, 2013, 609, 468–479.10.1016/j.tecto.2012.06.049Search in Google Scholar

[6] Andersen, O.B.; Knudsen, P. The role of satellite altimetry in gravity field modelling in coastal areas. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2000 Jan 1, 25(1), 17–24.10.1016/S1464-1895(00)00004-1Search in Google Scholar

[7] Bassin, C.; Laske, G.; Masters, T.G. The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 2002, 81, F897.Search in Google Scholar

[8] Bagherbandi, M.; Sjöberg, L.E. Improving gravimetric-isostatic models of crustal depth by correcting for non-isostatic effects and using CRUST2.0. Earth Sci. Rev., 2013, 117, 29–39.10.1016/j.earscirev.2012.12.002Search in Google Scholar

[9] Bai, Y.; Williams, S.E.; Müller, R.D.; Liu, Z.; Hosseinpour, M. Mapping crustal thickness using marine gravity data: Methods and uncertainties Crustal thickness by gravity inversion. Geophysics, 2014 Mar 1 79(2), G1-0.10.1190/geo2013-0270.1Search in Google Scholar

[10] Bott, M.H.P. The Interior of the Earth, Edward Arnold Publs., 1971, London, 316.Search in Google Scholar

[11] Carlson, R.L.; Raskin, G.S. Density of the ocean crust. Nature, 1984 Oct, 311(5986), 555.10.1038/311555a0Search in Google Scholar

[12] Deng, X.; Griffin, D.A.; Ridgway, K.; Church, J.A.; Featherstone, W.E.; White, N.J.; Cahill, M. Satellite altimetry for geodetic, oceanographic, and climate studies in the Australian region. In: Coastal altimetry (2011, pp. 473–508). Springer Berlin Heidelberg.10.1007/978-3-642-12796-0_18Search in Google Scholar

[13] Hwang, C; Parsons, B. An optimal procedure for deriving marine gravity from multi-satellite altimetry. J Geophys Int, 1996, 125, 705–719.10.1111/j.1365-246X.1996.tb06018.xSearch in Google Scholar

[14] Eshagh, M.; Hussain, M.; Tenzer, R.; Romeshkani, M. Moho density contrast in central Eurasia from GOCE gravity gradients. Remote Sensing, 2017, 8, 418, 1–18.10.3390/rs8050418Search in Google Scholar

[15] Goodacre, A.K. Generalized structure and composition of the deep crust and upper mantle in Canada. J. Geophys. Res., 1972, 77, 3146–3160.10.1029/JB077i017p03146Search in Google Scholar

[16] Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M.E. Update on CRUST1.0-A 1-degree global model of Earth’s crust. Geophys. Res. Abstr., 2013, 15, EGU2013-2658.Search in Google Scholar

[17] Mariani, P.; Braitenberg, C.; Ussami, N. Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations. J. South Am. Earth Sci., 2013, 45, 209–223.10.1016/j.jsames.2013.03.008Search in Google Scholar

[18] Müller, R.D.; Sdrolias, M.; Gaina, C.; Roest, W.R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 2008 Apr 1, 9(4).10.1029/2007GC001743Search in Google Scholar

[19] Niu, F.; James, D.E. Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution. Earth Planet. Sci. Lett., 2002, 200, 121–130.10.1016/S0012-821X(02)00584-8Search in Google Scholar

[20] Pavlis, N.K.; Factor, J.K.; Holmes, S.A. Terrain-related gravimetric quantities computed for the next EGM. In: Proceedings of the 1st International Symposium of the International Gravity Field Service vol. 18 (2007, pp. 318–323). Harita Dergisi, Istanbul.Search in Google Scholar

[21] Rapp, R.H. A comparison of altimeter and gravimetric geoids in the Tonga Trench and Indian Ocean areas. Bulletin géodésique, 1980, 54(2), 149–163.10.1007/BF02521244Search in Google Scholar

[22] Reguzzoni, M.; Sampietro, D.; Sansò, F. Global Moho from the combination of the CRUST2. 0 model and GOCE data. Geophysical Journal International, 2013, 195(1), 222–237.10.1093/gji/ggt247Search in Google Scholar

[23] Reguzzoni, M.; Sampietro, D. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf., 2015, 35, 31–43.10.1016/j.jag.2014.04.002Search in Google Scholar

[24] Sampietro, D.; Mansi, A.; Capponi, M. Moho depth and crustal architecture beneath the Levant Basin from Global Gravity Field Model. Geosciences, 2018, 8(6), 200.10.3390/geosciences8060200Search in Google Scholar

[25] Root, B.C.; van der Wal, W.; Novák, P.; Ebbing, J.; Vermeersen, L.L. Glacial isostatic adjustment in the static gravity field of Fennoscandia. Journal of Geophysical Research: Solid Earth, 2015 Jan 1, 120(1), 503–518.10.1002/2014JB011508Search in Google Scholar

[26] Sjöberg, L.E. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys. J. Int., 2009, 179, 1527–1536.10.1111/j.1365-246X.2009.04397.xSearch in Google Scholar

[27] Sjöberg, L.E.; Bagherbandi, M. A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys., 2011, 59, 502–525.10.2478/s11600-011-0004-6Search in Google Scholar

[28] Sjöberg, L.E. On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz inverse problem of isostasy. Geophys. J. Int., 2013, 193, 1277–1282.10.1093/gji/ggt008Search in Google Scholar

[29] Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 2014, 346(6205), 65–67, doi: 10.1126/science.1258213. Author information and acknowledgments.Search in Google Scholar PubMed

[30] Tenzer, R.; Bagherbandi, M.; Gladkikh, V. Signature of the upper mantle density structure in the refined gravity data. Comput. Geosci., 2012, 16, 975–986.10.1007/s10596-012-9298-ySearch in Google Scholar

[31] Tenzer, R.; Bagherbandi, M.; Vajda, P. Global model of the upper mantle lateral density structure based on combining seismic and isostatic models. Geosci. J., 2013, 17, 65–73.10.1007/s12303-013-0009-zSearch in Google Scholar

[32] Tenzer, R.; Chen, W. Regional gravity inversion of crustal thickness beneath the Tibetan plateau. Earth Sci. Inform., 2014, 7, 265–276.10.1007/s12145-014-0146-6Search in Google Scholar

[33] Tenzer, R.; Eshagh, M.; Jin, S. Martian sub-crustal stress from gravity and topographic models. Earth Planet. Sci. Lett., 2015a, 425, 84–92.10.1016/j.epsl.2015.05.049Search in Google Scholar

[34] Tenzer, R.; Chen, W.; Jin, S. Effect of Upper Mantle Density Structure on Moho Geometry. Pure Appl. Geophys., 2015b, 172, 1563–1583.10.1007/s00024-014-0960-2Search in Google Scholar

[35] Van der Meijde, M.; Juliá, J.; Assumpcáo, M. Gravity derived Moho for South America. Tectonophysics, 2013, 609, 456–467.10.1016/j.tecto.2013.03.023Search in Google Scholar

Received: 2018-09-09
Accepted: 2018-10-05
Published Online: 2018-10-19
Published in Print: 2019-01-28

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jag-2018-0034/html
Scroll to top button