Home Observing slope stability changes on the basis of tilt and hydrologic measurements
Article
Licensed
Unlicensed Requires Authentication

Observing slope stability changes on the basis of tilt and hydrologic measurements

  • Gy. Mentes EMAIL logo
Published/Copyright: April 6, 2017
Become an author with De Gruyter Brill

Abstract

In Hungary, the high loess bank of the River Danube in Dunaszekcső has been moving with varying rate since 2007. On the high bank a geodetic monitoring network was established in September 2007. At the same time two borehole tiltmeters and later two ground water level sensors were also installed. The high-sensitive tiltmeters made it possible to study the relationships between the small tilts of the high bank and the ground water levels and the water level of the River Danube. Results of the multiple regression analysis between tilt components and water levels showed that the temporal variation of the regression coefficients is in close connection with the stability of the high bank. The investigations also showed that the movements are in very strong connection with the variation of the ground water level and less depend on the variation of the water level of the River Danube. The characteristic tilt processes, 3–4 weeks before large movements, and the slope stability changes inferred from the relationships between tilts and water level variations can be useful for early warning of landslides.

Award Identifier / Grant number: K 81295

Funding statement: This work was funded by Országos Tudományos Kutatási Alapprogramok (OTKA) under project K 81295.

Acknowledgment

Special thanks to Tibor Molnár for his careful maintenance of the instruments to Ágnes Gimesiné Németh, Ferenc Schlaffer for their help in the field works: drilling boreholes, battery changes and reading the data out.

References

[1] Sterlacchini, S., Frigerio, S., Giacomelli, P., Brambilla, M. (2007). Landslide risk analysis: a multi-disciplinary methodological approach. Nat. Hazards Earth Syst. Sci., 7, 657–675. www.nat-hazards-earth-syst-sci.net/7/657/2007/.10.5194/nhess-7-657-2007Search in Google Scholar

[2] Gili, J. A., Corominas, J., Rius, J. (2000). Using Global Positioning System techniques in landslide monitoring. Engineering Geology, 55, 167–192.10.1016/S0013-7952(99)00127-1Search in Google Scholar

[3] Schmalz, T., Buhl, V., Eichhorn, A. (2010). An adaptive Kalman filtering approach for the calibration of finite difference models of mass movements. Journal of Applied Geodesy, 4, 127–135. doi:10.1515/JAG.2010.013.Search in Google Scholar

[4] Glabsch, J., Heunecke, O., Schuhbäck, S. (2009). Monitoring the Hornbergl landslide using a recently developed low cost GNSS sensor network. Journal of Applied Geodesy, 3, 179–192. doi:10.1515/JAG.2009.019.Search in Google Scholar

[5] Thuro, K., Singer, J., Festl, J., Wunderlich, T., Wasmeier, P., Reith, C., Heunecke, O., Glabsch, J., Schuhbäck, S. (2010). New landslide monitoring techniques – developments and experiences of the alpEWAS project. Journal of Applied Geodesy, 4, 69–90. doi:10.1515/JAG.2010.008.Search in Google Scholar

[6] Rödelsperger, S., Läufer, G., Gerstenecker, C., Becker, M. (2010). Monitoring of displacements with ground-based microwave interferometry. Journal of Applied Geodesy, 4, 41–54. doi:10.1515/JAG.2010.005.Search in Google Scholar

[7] Nikolaeva, E., Walter, T. R., Shirzaei, M., Zschau, J. (2014). Landslide observation and volume estimation in central Georgia based on L-band InSAR. Nat. Hazards Earth Syst. Sci., 14, 675–688. doi:10.5194/nhess-14-675-2014.Search in Google Scholar

[8] Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers, Dordrecht, p. 328.10.1007/0-306-47633-9Search in Google Scholar

[9] Woschitz, H. and Brunner, F. K. (2008). Monitoring a deep-seated mass movement using a large strain rosette. Measuring the Changes 13th FIG Symposium on Deformation Measurements and Analysis, 4th IAG Symposium on Geodesy for Geotechnical and Structural Engineering, LNEC, Lisbon, 2008 May 12–15.Search in Google Scholar

[10] Thuro, K., Wunderlich, Th., Heunecke, O., Singer, J., Wasmeier, P., Schuhbäck, St., Festl, J., Reith, Ch., Glabsch, J. (2014). Low Cost 3D Early Warning System for Alpine Instable Slopes: The Aggenalm Landslide Monitoring System. Wenzel, F. and Zschau, J. (eds.), Early Warning for Geological Disasters, 289. Advanced Technologies in Earth Sciences, doi:10.1007/978-3-642-12233-0_15, Springer-Verlag, Berlin, Heidelberg.Search in Google Scholar

[11] Brückl, E., Brunner, F. K., Lang, E., Mertl, S., Müller, M., Stary, I. U. (2013). The Gradenbach Observatory—monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides, 10, 815–829. doi:10.1007/s10346-013-0417-1.Search in Google Scholar

[12] Lienhart, W. (2015). Case studies of high-sensitivity monitoring of natural and engineered slopes. Journal of Rock Mechanics and Geotechnical Engineering, 7, 379–384.10.1016/j.jrmge.2015.04.002Search in Google Scholar

[13] Simeoni, L., Mongiovi, L. (2007). Inclinometer Monitoring of the Castelrotto Landslide in Italy. Journal of Geotechnical and Geoenvironmental Engineering, 133 (6), 653–666. doi:10.1061/(ASCE)1090-0241(2007)133:6(653).Search in Google Scholar

[14] Maio, C. D., Vassallo, R., Vallario, M., Pascale, S., Sdao, F. (2010). Structure and kinematics of a landslide in a complex clayey formation of the Italian Southern Apennines. Engineering Geology, 116, 311–322.10.1016/j.enggeo.2010.09.012Search in Google Scholar

[15] Fabian, M., Kümpel, H. J. (2003). Poroelasticity: observations of anomalous near surface tilt induced by ground water pumping. Journal of Hydrology, 281 (3), 187–205.10.1016/S0022-1694(03)00234-8Search in Google Scholar

[16] Kümpel, H. J., Lehmann, K., Fabian, M., Mentes, G. (2001). Point stability at shallow depths: experience from tilt measurements in the Lower Rhine Embayment, Germany, and implications for high resolution GPS and gravity recordings. Geophysical Journal International, 146, 699–713.10.1046/j.1365-246X.2001.00494.xSearch in Google Scholar

[17] García, A., Hördt, A., Fabian, M. (2010). Landslide monitoring with high resolution tilt measurements at the Dollendorfer Hardt landslide, Germany. Geomorphology, 120, 16–25.10.1016/j.geomorph.2009.09.011Search in Google Scholar

[18] Mentes, Gy., Bányai, L. (2014). Observation of Landslide Movements by Geodetic and Borehole Tilt Measurements. Kopáčik, A., Kyrinovič, P., and Štroner, M. (eds.), Proceedings of the 6th International Conference on Engineering Surveying INGEO, 53–58.Search in Google Scholar

[19] Mentes, Gy. (2015). Investigation of dynamic and kinematic landslide processes by borehole tiltmeters and extensometers. Procedia Earth and Planetary Science, 15, 421–427. doi:10.1016/j.proeps.2015.08.025.Search in Google Scholar

[20] Mentes, G., Bányai, L., Újvári, G., Bódis, B. V. (2015). Rutschungsprozesse des Hochufers der Donau bei Dunaszekcső. Allgemeine Vermessungs-Nachrichten, 122 (5), 200–206.Search in Google Scholar

[21] Mentes, G., Bódis B.V. (2012). Relationships between short periodic slope tilt variations and vital processes of the vegetation. Journal of Applied Geodesy, 6 (2), 83–88.10.1515/jag-2012-0009Search in Google Scholar

[22] Újvári, G., Mentes, G., Bányai, L., Kraft, J., Gyimóthy, A., Kovács, J. (2009). Evolution of a bank failure along the River Danube at Dunaszekcső, Hungary. Geomorphology, 109, 197–209.10.1016/j.geomorph.2009.03.002Search in Google Scholar

[23] Applied Geomechanics Inc. (1991). User’s Manual No. B-91-1004: Model 722 Borehole Tiltmeter. Santa Cruz, California, USA.Search in Google Scholar

[24] Mentes, G., Bányai, L., Újvári, G., Papp, G., Gribovszki, K., Bódis, B. V. (2012). Recurring mass movements on the Danube’s bank at Dunaszekcső (Hungary) observed by geodetic methods. Journal of Applied Geodesy, 6 (3–4), 203–208.10.1515/jag-2012-0011Search in Google Scholar

[25] ORIGIN 9.1 (2014) http://www.originlab.com. Accessed 11 August 2014.Search in Google Scholar

[26] Moyzes, A., Scheuer, Gy. (1978). A dunaszekcsői magaspart mérnökgeológiai vizsgálata. (Engineering geological investigation of the high bank at Dunaszekcső). Földtani Közlöny 108, 213–226 (in Hungarian with German abstract).Search in Google Scholar

[27] Pécsi, M., Schweitzer, F., Scheuer, Gy. (1979). Engineering geological and geomorphological investigations of landslides in the loess bluffs along the Danube in the Great Hungarian Plain. Acta Geologica Hungarica, 22, 327–343.Search in Google Scholar

[28] Kraft, J. (2005). A dunaszekcsői Töröklyuk kialakulása és fennmaradása (Evolution and survival of the Töröklyuk cave at Dunaszekcső). Mecsek Egyesület Évkönyve a 2004-es egyesületi évről. Új Évfolyam, 8, 133–153 (in Hungarian).Search in Google Scholar

Received: 2016-6-15
Accepted: 2017-3-17
Published Online: 2017-4-6
Published in Print: 2017-6-27

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jag-2016-0020/html
Scroll to top button