Abstract
In this article first ideas are presented to extend the classical concept of geodetic network adjustment by introducing a new method for uncertainty assessment as two-step analysis.
In the first step the raw data and possible influencing factors are analyzed using uncertainty modeling according to GUM (Guidelines to the Expression of Uncertainty in Measurements). This approach is well established in metrology, but rarely adapted within Geodesy.
The second step consists of Monte-Carlo-Simulations (MC-simulations) for the complete processing chain from raw input data and pre-processing to adjustment computations and quality assessment. To perform these simulations, possible realizations of raw data and the influencing factors are generated, using probability distributions for all variables and the established concept of pseudo-random number generators. Final result is a point cloud which represents the uncertainty of the estimated coordinates; a confidence region can be assigned to these point clouds, as well.
This concept may replace the common concept of variance propagation and the quality assessment of adjustment parameters by using their covariance matrix. It allows a new way for uncertainty assessment in accordance with the GUM concept for uncertainty modelling and propagation.
As practical example the local tie network in “Metsähovi Fundamental Station”, Finland is used, where classical geodetic observations are combined with GNSS data.
Funding statement: This project is performed within the joint research project SIB60 “Surveying” of the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.
References
[1] Abbondanza, C., Sarti, P. (2012). Impact of network geometry, observation schemes and telescope structure deformations on local ties: simulations applied to Sardinia Radio Telescope. Journal of Geodesy, 86(3), p. 181–192.10.1007/s00190-011-0507-6Search in Google Scholar
[2] Bich, W. (2008). Uncertainty Evaluation by means of a Monte Carlo Approach. BIPM Workshop 2 on CCRI Activity Uncertainties and Comparisons, Sèvres, 17–18 September 2008. Retrieved from http://www.bipm.org/wg/CCRI(II)/WORKSHOP(II)/Allowed/2/Bich.pdfSearch in Google Scholar
[3] Campbell, J., Görres, B., Siemes, M., Wirsch, J., Becker, M. (2004). Zur Genauigkeit der GPS-Antennenkalibrierung auf der Grundlage von Labormessungen und deren Vergleich mit anderen Verfahren. Allgemeine Vermessungs-Nachrichten (AVN), 2004, p. 2–11.Search in Google Scholar
[4] Cramér, H. (1946). Mathematical models in statistics. Princeton Math. Series, vol. 9.10.1515/9781400883868Search in Google Scholar
[5] DIN ENV 13005 (1999). Leitfaden zur Angabe der Unsicherheit beim Messen, Beuth Verlag, Berlin.Search in Google Scholar
[6] Dupraz, H., Niemeier, W. (1979). Un critère pour l’analyse des résaux gódésiques de contrôle. Mensuration, Photogrammetrie, Genie rural, 1979(4).Search in Google Scholar
[7] Hennes, M., Heister, H. (2007). Neuere Aspekte zur Definition und zum Gebrauch von Genauigkeitsmaßen in der Ingenenieur-geodäsie. Allgemeine Vermessungs-Nachrichten (AVN), 2007(11–12), p. 375–383.Search in Google Scholar
[8] Jokela, J. (2014). Length in Geodesy – On Metrological Traceability of a Geospatial Measurand. Publications of the Finnish Geodetic Institute, vol. 154.Search in Google Scholar
[9] Kessel, W. (2002). Measurement uncertainty according to ISO/BIPM-GUM. Thermochimica Acta, 382, p. 1–16.10.1016/S0040-6031(01)00729-8Search in Google Scholar
[10] Kroese, D. P., Taimre, T., Botev, Z. I. (2011). Handbook of Monte Carlo Methods (Bd. 706). John Wiley & Sons.10.1002/9781118014967Search in Google Scholar
[11] Kutterer, H-J., Schön, S. (2004). Alternativen bei der Modellierung der Unsicherheiten beim Messen. Zeitschrift für Vermessungswesen, 129, p. 389–398.Search in Google Scholar
[12] Guide, I. S. O. (1995). 98. Guide to the expression of uncertainty in measurement (GUM). International Organization for Standardization, Genève.Search in Google Scholar
[13] Neumann, I., Alkhatib, H., Kutterer, H. (2008). Comparison of Monte-Carlo and Fuzzy Techniques in Uncertainty Modelling. 13. FIG Symposium on Deformation Analysis, Lisboa.Search in Google Scholar
[14] Niemeier, W. (2008). Ausgleichungsrechnung (2. Edition). Walter de Gruyter, Berlin.10.1515/9783110206784Search in Google Scholar
[15] Ning, T., Haas, R., Elgered, G. (2014). Determination of the Telescope Invariant Point and the local tie vector at Onsala using GPS measurements. IVS 2014 General Meeting Proceedings “VGOS: The New VLBI Network”, Science Press, Beijing, p. 163–167.Search in Google Scholar
[16] Nothnagel, A. (2009). Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. Journal of Geodesy, 83(8), p. 787–792.10.1007/s00190-008-0284-zSearch in Google Scholar
[17] Rebischung, P., Griffiths, J., Ray, J., Schmid, R., Collilieux, X., Garayt, B. (2012). IGS08: the IGS realization of ITRF2008. GPS Solutions, 16(4), p. 483–494.10.1007/s10291-011-0248-2Search in Google Scholar
[18] Schwarz, W. (2012). Einflussgrößen bei elektrooptischen Distanzmessungen und ihre Erfassung. Allgemeine Vermessungs-Nachrichten (AVN), 119(10), p. 323–335.Search in Google Scholar
[19] Sommer, K.-D., Siebert, B. (2004). Praxisgerechtes Bestimmen der Messunsicherheit nach GUM. tm – Technisches Messen, 71, p. 52–66.10.1524/teme.71.2.52.27068Search in Google Scholar
[20] Siebert, B., Sommer, K.-D. (2004). Weiterent-wicklung des GUM und Monte-Carlo-Techniken. tm – Technisches Messen, 71, p. 67–80.10.1524/teme.71.2.67.27064Search in Google Scholar
[21] Sivia, D. S. (1996). Data Analysis – A Bayesian Tutorial. Clarendon Press, Oxford.Search in Google Scholar
[22] Weise, K., Wöger, W. (1999). Meßunsicherheit und Meßdatenauswertung. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG.10.1002/3527602984Search in Google Scholar
[23] Woods, A., Ruddick, R. (2007). The 2007 Yarragadee (Moblas 5) Local Tie Survey. Geoscience Australia, 19.Search in Google Scholar
© 2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial to the special edition on Deformation Monitoring
- Research Articles
- Uncertainty assessment in geodetic network adjustment by combining GUM and Monte-Carlo-simulations
- A synthetic covariance matrix for monitoring by terrestrial laser scanning
- Intrinsic random functions for mitigation of atmospheric effects in terrestrial radar interferometry
- Calibration Method for IATS and Application in Multi-Target Monitoring Using Coded Targets
- Deformation Monitoring of the Submillimetric UPV Calibration Baseline
- Observing slope stability changes on the basis of tilt and hydrologic measurements
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial to the special edition on Deformation Monitoring
- Research Articles
- Uncertainty assessment in geodetic network adjustment by combining GUM and Monte-Carlo-simulations
- A synthetic covariance matrix for monitoring by terrestrial laser scanning
- Intrinsic random functions for mitigation of atmospheric effects in terrestrial radar interferometry
- Calibration Method for IATS and Application in Multi-Target Monitoring Using Coded Targets
- Deformation Monitoring of the Submillimetric UPV Calibration Baseline
- Observing slope stability changes on the basis of tilt and hydrologic measurements