Startseite A geometry in the set of solutions to ill-posed linear problems with box constraints: Applications to probabilities on discrete sets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A geometry in the set of solutions to ill-posed linear problems with box constraints: Applications to probabilities on discrete sets

  • Henryk Gzyl EMAIL logo
Veröffentlicht/Copyright: 15. November 2024
Journal of Applied Analysis
Aus der Zeitschrift Journal of Applied Analysis

Abstract

When there are no constraints upon the solutions of the equation 𝑨 𝝃 = 𝒚 , where 𝑨 is a K × N - matrix, 𝝃 N and 𝒚 K a given vector, the description of the set of solutions as 𝒚 varies in K is well known. But this is not so when the solutions are required to satisfy 𝝃 𝒦 i j N [ a j , b j ] , for finite a j b j : 1 j N . To solve this problem we bring in a strictly convex, Fermi-Dirac entropy function Ψ ( 𝝃 ) , and find the solution as a r g m i n { Ψ ( 𝝃 ) : 𝝃 𝒦 , 𝑨 𝝃 = y } . If λ denotes the Lagrange multipliers of the optimization problem, we study the properties of the parametric surface 𝝀 𝝃 ( 𝝀 ) in the geometry on 𝒦 defined by the Hessian metric derived from Ψ ( 𝝃 ) . In particular, we prove that the surface 𝝀 𝝃 ( 𝝀 ) is contained in ker ( 𝑨 ) in the Hessian metric derived from Ψ.

References

[1] S.-I. Amari and A. Cichocki, Information geometry of divergence functions, Bull. Polish Acad. Sci. 58 (2010), 183–195. 10.2478/v10175-010-0019-1Suche in Google Scholar

[2] S.-I. Amari, R. Karakida and M. Oizumi, Information geometry connecting Wasserstein distance and Kullback–Leibler divergence via the entropy-relaxed transportation problem, Inf. Geom. 1 (2018), no. 1, 13–37. 10.1007/s41884-018-0002-8Suche in Google Scholar

[3] M. Cuturi, Sinkhorn distances: lightspeed computation of optimal transport, Proceedings of the 26th International Conference on Neural Information Processing Systems. Vol. 2, Curran Associates, Red Hook (2013), 2292–2300. Suche in Google Scholar

[4] D. Dacunha-Castelle and F. Gamboa, Maximum d’entropie et problème des moments, Ann. Inst. Henri Poincaré Probab. Stat. 26 (1990), no. 4, 567–596. Suche in Google Scholar

[5] A. Golan and H. Gzyl, A generalized maxentropic inversion procedure for noisy data, Appl. Math. Comput. 127 (2002), no. 2–3, 249–260. 10.1016/S0096-3003(00)00172-7Suche in Google Scholar

[6] H. Gzyl, Construction of contingency tables by maximum entropy in the mean, Comm. Statist. Theory Methods 50 (2021), no. 20, 4778–4786. 10.1080/03610926.2020.1723639Suche in Google Scholar

[7] H. Gzyl and F. Nielsen, Geometry of the probability simplex and its connection to the maximum entropy method, J. Appl. Math. Stat. Inform. 16 (2020), no. 1, 25–35. 10.2478/jamsi-2020-0003Suche in Google Scholar

[8] J. Z. Hearon, Generalized inverses and solutions of linear systems, J. Res. Nat. Bur. Standards Sect. B 72B (1968), 303–308. 10.6028/jres.072B.030Suche in Google Scholar

[9] N. J. Hicks, Notes on Differential Geometry, Van Nostrand Math. Stud. 3, D. Van Nostrand, Princeton, 1965. Suche in Google Scholar

[10] G. Khan and J. Zhang, When optimal transport meets information geometry, Inf. Geom. 5 (2022), no. 1, 47–78. 10.1007/s41884-022-00066-wSuche in Google Scholar

[11] B. Muzellec, R. Nock, G. Patrini and F. Nielsen, Tsallis regularized optimal transport and ecological inference, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI Press, Washington (2016), 2387–2393. 10.1609/aaai.v31i1.10854Suche in Google Scholar

[12] S. Sternberg, Curvature in Mathematics and Physics, Dover Publications, Mineola, 2012. Suche in Google Scholar

[13] T.-K. L. Wong, Logarithmic divergences from optimal transport and Rényi geometry, Inf. Geom. 1 (2018), no. 1, 39–78. 10.1007/s41884-018-0012-6Suche in Google Scholar

[14] T.-K. L. Wong and J. Yang, Pseudo-Riemannian geometry encodes information geometry in optimal transport, Inf. Geom. 5 (2022), no. 1, 131–159. 10.1007/s41884-021-00053-7Suche in Google Scholar PubMed PubMed Central

Received: 2024-08-28
Revised: 2024-10-07
Accepted: 2024-10-09
Published Online: 2024-11-15

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2024-0142/html?lang=de
Button zum nach oben scrollen