Startseite Analysis of a nonlinear elliptic system with variable coefficients and Hardy potential with Carathéodory nonlinearity: Existence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of a nonlinear elliptic system with variable coefficients and Hardy potential with Carathéodory nonlinearity: Existence

  • Khaled Kefi ORCID logo EMAIL logo , Qiguang An und Jian Liu
Veröffentlicht/Copyright: 2. Oktober 2024
Journal of Applied Analysis
Aus der Zeitschrift Journal of Applied Analysis

Abstract

This study investigates existence result of a nontrivial weak solutions for a system of nonlinear elliptic equations involving Hardy Potentials. The problem arises in the mathematical modeling of complex physical phenomena.

MSC 2020: 35J20; 35J47

Award Identifier / Grant number: ZR2021MA070

Funding statement: This work was funding by Northern Border University, through the project number NBU-FFR-2024-1706-05. This work is supported by Natural Science Foundation of Shandong Province, China (ZR2021MA070).

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number NBU-FFR-2024-1706-05.

References

[1] S. Antontsev, Wave equation with p ( x , t ) -Laplacian and damping term: Existence and blow-up, Differ. Equ. Appl. 3 (2011), no. 4, 503–525. 10.7153/dea-03-32Suche in Google Scholar

[2] G. Bonanno, Relations between the mountain pass theorem and local minima, Adv. Nonlinear Anal. 1 (2012), no. 3, 205–220. 10.1515/anona-2012-0003Suche in Google Scholar

[3] E. B. Davies and A. M. Hinz, Explicit constants for Rellich inequalities in L p ( Ω ) , Math. Z. 227 (1998), no. 3, 511–523. 10.1007/PL00004389Suche in Google Scholar

[4] X.-L. Fan and Q.-H. Zhang, Existence of solutions for p ( x ) -Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), no. 8, 1843–1852. 10.1016/S0362-546X(02)00150-5Suche in Google Scholar

[5] X.-L. Fan and D. Zhao, On the generalized Orlicz–Sobolev space W k , p ( x ) ( Ω ) , J. Gansu Educ. College 12 (1998), 1–6. Suche in Google Scholar

[6] Y. Karagiorgos and N. Yannakakis, A Neumann problem involving the p ( x ) -Laplacian with p = in a subdomain, Adv. Calc. Var. 9 (2016), no. 1, 65–76. 10.1515/acv-2014-0003Suche in Google Scholar

[7] K. Kefi, Existence and multiplicity of triple weak solutions for a nonlinear elliptic problem with fourth-order operator and Hardy potential, AIMS Math. 9 (2024), no. 7, 17758–17773. 10.3934/math.2024863Suche in Google Scholar

[8] K. Kefi, N. Irzi, M. M. Al-Shomrani and D. D. Repovš, On the fourth-order Leray–Lions problem with indefinite weight and nonstandard growth conditions, Bull. Math. Sci. 12 (2022), no. 2, Article ID 2150008. 10.1142/S1664360721500089Suche in Google Scholar

[9] S. A. Messaoudi, M. M. Al-Gharabli and A. M. Al-Mahdi, On the decay of solutions of a viscoelastic wave equation with variable sources, Math. Methods Appl. Sci. 45 (2022), no. 14, 8389–8411. 10.1002/mma.7141Suche in Google Scholar

[10] Z. Musbah and A. Razani, A class of biharmonic nonlocal quasilinear systems consisting of Leray–Lions type operators with Hardy potentials, Bound. Value Probl. 2022 (2022), Paper No. 88. 10.1186/s13661-022-01666-2Suche in Google Scholar

[11] A. Razani and F. Safari, Solutions to a ( p 1 , , p n ) -Laplacian problem with Hardy potentials, J. Nonlinear Math. Phys. 30 (2023), no. 2, 413–427. 10.1007/s44198-022-00089-ySuche in Google Scholar

[12] J. Simon, Régularité de la solution d’une équation non linéaire dans 𝐑 N , Journées d’Analyse Non Linéaire, Lecture Notes in Math. 665, Springer, Berlin (1978), 205–227. 10.1007/BFb0061807Suche in Google Scholar

Received: 2024-05-20
Revised: 2024-08-24
Accepted: 2024-09-03
Published Online: 2024-10-02

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2024-0084/html?lang=de
Button zum nach oben scrollen