Abstract
In this paper, Lie symmetry analysis method is applied to
References
[1] A. Bansal, A. Biswas, Q. Zhou and M. M. Babatin, Lie symmetry analysis for cubic-quartic nonlinear Schrödinger’s equation, Optik 169 (2018), 12–15. 10.1016/j.ijleo.2018.05.030Suche in Google Scholar
[2] Y. Feng and J. Yu, Lie symmetry analysis of fractional ordinary differential equation with neutral delay, AIMS Math. 6 (2021), no. 4, 3592–3605. 10.3934/math.2021214Suche in Google Scholar
[3] Y. Q. Feng and J. C. Yu, Lie group method for constructing integrating factors of first-order ordinary differential equations, Int. J. Math. Ed. Sci. 54 (2023), no. 2, 292–308. 10.1080/0020739X.2021.1992027Suche in Google Scholar
[4] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, 2000. 10.1142/9789812817747Suche in Google Scholar
[5] Q. Hussain, F. D. Zaman and A. H. Kara, Invariant analysis and conservation laws of time fractional Schrödinger equations, Optik 206 (2020), Article ID 164356. 10.1016/j.ijleo.2020.164356Suche in Google Scholar
[6] N. H. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equations. Vol. 1, CRC Press, Boca Raton, 1993. Suche in Google Scholar
[7] N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl. 333 (2007), no. 1, 311–328. 10.1016/j.jmaa.2006.10.078Suche in Google Scholar
[8] N. H. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys. A 44 (2011), Article ID 432002. 10.1088/1751-8113/44/43/432002Suche in Google Scholar
[9] A. Jhangeer, H. Rezazadeh and A. Seadawy, A study of travelling, periodic, quasiperiodic and chaotic structures of perturbed Fokas–Lenells model, Pramana-J. Phys. 95 (2021), Paper No. 41. 10.1007/s12043-020-02067-9Suche in Google Scholar
[10] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. Suche in Google Scholar
[11] A. M. Nass, Symmetry analysis of space-time fractional Poisson equation with a delay, Quaest. Math. 42 (2019), no. 9, 1221–1235. 10.2989/16073606.2018.1513095Suche in Google Scholar
[12] P. J. Olver, Applications of Lie Groups to Differential Equations, Grad. Texts in Math. 107, Springer, New York, 1986. 10.1007/978-1-4684-0274-2Suche in Google Scholar
[13] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng. 198, Academic Press, San Diego, 1999. Suche in Google Scholar
[14] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1993. Suche in Google Scholar
[15] A. R. Seadawy, Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma, Comput. Math. Appl. 67 (2014), no. 1, 172–180. 10.1016/j.camwa.2013.11.001Suche in Google Scholar
[16] A. R. Seadawy, K. K. Ali and R. I. Nuruddeen, A variety of soliton solutions for the fractional Wazwaz–Benjamin–Bona–Mahony equations, Results Phys. 12 (2019), 2234–2241. 10.1016/j.rinp.2019.02.064Suche in Google Scholar
[17] A. R. Seadawy and B. Alsaedi, Contraction of variational principle and optical soliton solutions for two models of nonlinear Schrödinger equation with polynomial law nonlinearity, AIMS Math. 9 (2024), no. 3, 6336–6367. 10.3934/math.2024309Suche in Google Scholar
[18] A. R. Seadawy and B. A. Alsaedi, Soliton solutions of nonlinear Schrödinger dynamical equation with exotic law nonlinearity by variational principle method, Opt. Quant. Electron. 56 (2024), Paper No. 700. 10.1007/s11082-024-06367-xSuche in Google Scholar
[19] A. R. Seadawy, M. Arshad and D. Lu, The weakly nonlinear wave propagation theory for the Kelvin–Helmholtz instability in magnetohydrodynamics flows, Chaos Solitons Fractals 139 (2020), Article ID 110141. 10.1016/j.chaos.2020.110141Suche in Google Scholar
[20] A. R. Seadawy, S. T. R. Rizvi, I. Ali, M. Younis, K. Ali, M. M. Makhlouf and A. Althobaiti, Conservation laws, optical molecules, modulation instability and Painlevé analysis for the Chen–Lee–Liu model, Opt. Quant. Electron. 53 (2021), Paper No. 172. 10.1007/s11082-021-02823-0Suche in Google Scholar
[21] J. Wang, K. Shehzad, A. R. Seadawy, M. Arshad and F. Asmat, Dynamic study of multi-peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems with their stability, J. Taibah Univ. Sci. 17 (2023), no. 1, Article ID 2163872. 10.1080/16583655.2022.2163872Suche in Google Scholar
[22] M. Yourdkhany and M. Nadjafikhah, Symmetries, similarity invariant solution, conservation laws and exact solutions of the time-fractional harmonic oscillator equation, J. Geom. Phys. 153 (2020), Article ID 103661. 10.1016/j.geomphys.2020.103661Suche in Google Scholar
[23] J. Yu, Lie symmetry analysis of time fractional Burgers equation, Korteweg–de Vries equation and generalized reaction-diffusion equation with delays, Int. J. Geom. Methods Mod. Phys. 19 (2022), no. 14, Article ID 2250219. 10.1142/S021988782250219XSuche in Google Scholar
[24] J. Yu, Lie symmetry, exact solutions and conservation laws of time fractional Black–Scholes equation derived by the fractional Brownian motion, J. Appl. Anal. 30 (2024), no. 1, 137–145. 10.1515/jaa-2023-0107Suche in Google Scholar
[25] J. Yu and Y. Feng, Lie symmetry analysis and exact solutions of space-time fractional cubic Schrödinger equation, Int. J. Geom. Methods Mod. Phys. 19 (2022), no. 5, Article ID 2250077. 10.1142/S0219887822500773Suche in Google Scholar
[26] J. Yu and Y. Feng, Lie symmetry, exact solutions and conservation laws of some fractional partial differential equations, J. Appl. Anal. Comput. 13 (2023), no. 4, 1872–1889. 10.11948/20220268Suche in Google Scholar
[27] J. Yu and Y. Feng, Group classification for one type of space-time fractional quasilinear parabolic equation, Quantum Stud. Math. Found. 1 (2024), 10.1007/s40509-024-00338-3. 10.1007/s40509-024-00338-3Suche in Google Scholar
[28]
J. Yu and Y. Feng,
Lie symmetry analysis, power series solutions and conservation laws of
[29] J. Yu and Y. Feng, On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws, Chaos Solitons Fractals 182 (2024), Article ID 114855. 10.1016/j.chaos.2024.114855Suche in Google Scholar
[30] J. Yu, Y. Feng and X. Wang, Lie symmetry analysis and exact solutions of time fractional Black–Scholes equation, Int. J. Financ. Eng. 9 (2022), no. 4, Article ID 2250023. 10.1142/S2424786322500232Suche in Google Scholar
[31] Z.-Y. Zhang and G.-F. Li, Lie symmetry analysis and exact solutions of the time-fractional biological population model, Phys. A 540 (2020), Article ID 123134. 10.1016/j.physa.2019.123134Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston