Startseite Exponential stability of non-conformable fractional-order systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exponential stability of non-conformable fractional-order systems

  • Nadhem Echi , Fehmi Mabrouk EMAIL logo und Faouzi Omri
Veröffentlicht/Copyright: 24. April 2024

Abstract

Recently, the authors Guzman et al. (2018) introduced a new simple well-behaved definition of the fractional derivative called non-conformable fractional derivative. In this paper we study the exponential stability of non-conformable fractional-order systems by using the Lyapunov function and Gronwall inequality. These inequalities can be used as handy tools to research stability problems of nonlinear systems. Sufficient conditions for exponential stability are given using the Lyapunov theory. Further, deals with the state feedback stabilization problems for a family of nonlinear systems satisfying a Lipschitz continuity condition. The stability of the controller is proved by means of the new Lyapunov stability theorem given in this paper. A numerical example is given to illustrate the efficiency of the obtained result.

MSC 2020: 34D20; 93D15; 34A08

Acknowledgements

The authors sincerely thank the associated editor and anonymous reviewers for their constructive comments that helped to improve the quality and presentation of this paper.

References

[1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66. 10.1016/j.cam.2014.10.016Suche in Google Scholar

[2] N. Aguila-Camacho, M. A. Duarte-Mermoud and J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 9, 2951–2957. 10.1016/j.cnsns.2014.01.022Suche in Google Scholar

[3] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Stud. Appl. Math. 15, Society for Industrial and Applied Mathematics, Philadelphia, 1998. Suche in Google Scholar

[4] S. S. Dragomir, Some Gronwall Type Inequalities and Applications, Nova Science, Hauppauge, 2003. Suche in Google Scholar

[5] A. Fleitas, J. A. Méndez-Bermúdez, J. E. Nápoles Valdés and J. M. Sigarreta Almira, On fractional Liénard-type systems, Rev. Mexicana Fís. 65 (2019), no. 6, 618–625. 10.31349/RevMexFis.65.618Suche in Google Scholar

[6] P. M. Guzmán, G. Langton, L. M. Lugo Motta Bittencurt, J. Medina and J. E. Nápoles Valdes, A new definition of a fractional derivative of local type, J. Math. Anal. 9 (2018), no. 2, 88–98. Suche in Google Scholar

[7] P. M. Guzmán, L. M. Lugo Motta Bittencurt and J. E. Nápoles Valdes, On the stability of solutions of fractional non-conformable differential equations, Stud. Univ. Babeş-Bolyai Math. 65 (2020), no. 4, 495–502. 10.24193/subbmath.2020.4.02Suche in Google Scholar

[8] P. M. Guzmán and J. E. N. Valdés, A note on the oscillatory character of some non-conformable generalized linéard system, Adv. Math. Mod. Appl. 2 (2019), 127–133. Suche in Google Scholar

[9] S. Kasmi, F. Mabrouk and F. Omri, Exponential stabilization of conformable fractional bilinear systems with multiple inputs, Asian-Eur. J. Math. 16 (2023), no. 9, Paper No. 2350169. 10.1142/S1793557123501693Suche in Google Scholar

[10] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70. 10.1016/j.cam.2014.01.002Suche in Google Scholar

[11] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006. Suche in Google Scholar

[12] P. Kumam, A. Ali, K. Shah and R. A. Khan, Existence results and Hyers–Ulam stability to a class of nonlinear arbitrary order differential equations, J. Nonlinear Sci. Appl. 10 (2017), no. 6, 2986–2997. 10.22436/jnsa.010.06.13Suche in Google Scholar

[13] T. Li and Y. Wang, Stability of a class of fractional-order nonlinear systems, Discrete Dyn. Nat. Soc. 2014 (2014), Article ID 724270. 10.1155/2014/724270Suche in Google Scholar

[14] Y. Li, Y. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl. 59 (2010), no. 5, 1810–1821. 10.1016/j.camwa.2009.08.019Suche in Google Scholar

[15] T. D. Liu, F. Wang and W. C. Lu, Global stabilization for a class of nonlinear fractional-order systems, Int. J. Model. Simul. Sci. Comput. 10 (2019), Article ID 1941009. 10.1142/S1793962319410095Suche in Google Scholar

[16] J. E. Nápoles Valdes, P. M. Guzmán and L. M. Lugo, Some new results on nonconformable fractional calculus, Adv. Dyn. Syst. Appl. 13 (2018), no. 2, 167–175. Suche in Google Scholar

[17] M. D. Ortigueira and J. A. Tenreiro Machado, What is a fractional derivative?, J. Comput. Phys. 293 (2015), 4–13. 10.1016/j.jcp.2014.07.019Suche in Google Scholar

[18] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng. 198, Academic Press, San Diego, 1999. Suche in Google Scholar

[19] A. Pratap, R. Raja, R. P. Agarwal and J. Cao, Stability analysis and robust synchronization of fractional-order competitive neural networks with different time scales and impulsive perturbations, Internat. J. Adapt. Control Signal Process. 33 (2019), no. 11, 1635–1660. 10.1002/acs.3056Suche in Google Scholar

[20] A. Pratap, R. Raja, J. Alzabut, J. Cao, G. Rajchakit and C. Huang, Mittag-Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field, Math. Methods Appl. Sci. 43 (2020), no. 10, 6223–6253. 10.1002/mma.6367Suche in Google Scholar

[21] A. Pratap, R. Raja, J. Alzabut, J. Dianavinnarasi, J. Cao and G. Rajchakit, Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses, Neural Process. Lett. 51 (2020), 1485–1526. 10.1007/s11063-019-10154-1Suche in Google Scholar

[22] A. Pratap, R. Raja, J. Cao, C. Huang, M. Niezabitowski and O. Bagdasar, Stability of discrete-time fractional-order time-delayed neural networks in complex field, Math. Methods Appl. Sci. 44 (2021), no. 1, 419–440. 10.1002/mma.6745Suche in Google Scholar

[23] Y. Qi and X. Wang, Asymptotical stability analysis of conformable fractional systems, J. Taibah Univ. Sci. 14 (2020), 44–49. 10.1080/16583655.2019.1701390Suche in Google Scholar

[24] Z. Rasooli Berardehi, C. Zhang, M. Taheri, M. Roohi and M. H. Khooban, A fuzzy control strategy to synchronize fractional-order nonlinear systems including input saturation, Int. J. Intell. Syst. 2023 (2023), Article ID 1550256. 10.1155/2023/1550256Suche in Google Scholar

[25] M. Roohi, S. Mirzajani and A. B. O’Connor, A no-chatter single-input finite-time PID sliding mode control technique for stabilization of a class of 4d chaotic fractional-order laser systems, Mathematics 11 (2023), Paper No. 4463. 10.3390/math11214463Suche in Google Scholar

[26] M. Roohi, C. Zhang, M. Taheri and A. Basse-O’Connor, Synchronization of fractional-order delayed neural networks using dynamic-free adaptive sliding mode control, Fractal Fract. 7 (2023), Paper No. 682. 10.3390/fractalfract7090682Suche in Google Scholar

[27] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, 1993. Suche in Google Scholar

[28] A. Souahi, A. Ben Makhlouf and M. A. Hammami, Stability analysis of conformable fractional-order nonlinear systems, Indag. Math. (N. S.) 28 (2017), no. 6, 1265–1274. 10.1016/j.indag.2017.09.009Suche in Google Scholar

[29] M. Taheri, Y. Chen, C. Zhang, Z. R. Berardehi, M. Roohi and M. H. Khooban, A finite-time sliding mode control technique for synchronization chaotic fractional-order laser systems with application on encryption of color images, Optik 285 (2023), Article ID 170948. 10.1016/j.ijleo.2023.170948Suche in Google Scholar

[30] M. Vivas-Cortez, J. E. Nápoles Valdés, J. E. Hernández Hernández, J. Velasco Velasco and O. Larreal, On non-conformable fractional Laplace transform, Appl. Math. Inf. Sci. 15 (2021), no. 4, 403–409. 10.18576/amis/150401Suche in Google Scholar

[31] X. Wang, Mittag-Leffler stabilization of fractional-order nonlinear systems with unknown control coefficients, Adv. Difference Equ. 2018 (2018), Paper No. 16. 10.1186/s13662-018-1470-9Suche in Google Scholar

Received: 2023-11-06
Revised: 2024-04-08
Accepted: 2024-04-12
Published Online: 2024-04-24
Published in Print: 2024-12-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. On the Laplace transform
  3. An uncertainty principle for the windowed Bochner–Fourier transform with the complex-valued window function
  4. Controllability result in α-norm for some impulsive partial functional integrodifferential equation with infinite delay in Banach spaces
  5. Polynomial convergence of iterations of certain random operators in Hilbert space
  6. Trigonometric approximation of signals (functions) belonging to certain Lipschitz spaces using C δ.C operator
  7. Almost compactness in neutrosophic topological spaces
  8. Some results for a weakly coupled system of semi-linear structurally damped σ-evolution equations
  9. On the stochastic elliptic equations involving fractional derivative
  10. A note on Köthe–Toeplitz duals and multiplier spaces of sequence spaces involving bicomplex numbers
  11. A brief survey on the development and applications of Goebel’s coincidence point theorem in differential and integral equations
  12. Boundary controllability for variable coefficients one-dimensional wave equation with interior degeneracy
  13. On random pairwise comparisons matrices and their geometry
  14. Statistically convergent difference sequences of bi-complex numbers
  15. On some inequalities concerning polynomials with restricted zeros
  16. New retarded nonlinear integral inequalities of Gronwall–Bellman–Pachpatte type and their applications
  17. On a new variant of cyclic (noncyclic) condensing operators with existence of optimal solutions to an FDE
  18. Exponential stability of non-conformable fractional-order systems
Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2023-0134/html
Button zum nach oben scrollen