Startseite Converse Ohlin’s lemma for convex and strongly convex functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Converse Ohlin’s lemma for convex and strongly convex functions

  • Mirosław Adamek ORCID logo EMAIL logo und Kazimierz Nikodem ORCID logo
Veröffentlicht/Copyright: 26. Oktober 2022

Abstract

Theorems which are converse to the Ohlin lemma for convex and strongly convex functions are proved. New proofs of probabilistic characterizations of convex and strongly convex functions are presented.

MSC 2010: 26A51; 39B62; 26D15

References

[1] M. Bessenyei and Z. Páles, Characterization of higher-order monotonicity via integral inequalities, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 4, 723–736. 10.1017/S0308210509001188Suche in Google Scholar

[2] M. Denuit, C. Lefevre and M. Shaked, The s-convex orders among real random variables, with applications, Math. Inequal. Appl. 1 (1998), no. 4, 585–613. 10.7153/mia-01-56Suche in Google Scholar

[3] M. Klaričić Bakula and K. Nikodem, On the converse Jensen inequality for strongly convex functions, J. Math. Anal. Appl. 434 (2016), no. 1, 516–522. 10.1016/j.jmaa.2015.09.032Suche in Google Scholar

[4] N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), no. 1–2, 193–199. 10.1007/s00010-010-0043-0Suche in Google Scholar

[5] K. Nikodem, On strongly convex functions and related classes of functions, Handbook of Functional Equations, Springer Optim. Appl. 95, Springer, New York (2014), 365–405. 10.1007/978-1-4939-1246-9_16Suche in Google Scholar

[6] K. Nikodem and T. Rajba, Ohlin and Levin–Stečkin-type results for strongly conve functions, Ann. Math. Sil. 34 (2020), no. 1, 123–132. 10.2478/amsil-2020-0017Suche in Google Scholar

[7] J. Ohlin, On a class of measures of dispersion with application to optimal reinsurance, Astin Bull. 5 (1969), 249–266. 10.1017/S0515036100008102Suche in Google Scholar

[8] A. Olbryś and T. Szostok, Inequalities of the Hermite–Hadamard type involving numerical differentiation formulas, Results Math. 67 (2015), no. 3–4, 403–416. 10.1007/s00025-015-0451-5Suche in Google Scholar

[9] B. T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72–75. Suche in Google Scholar

[10] T. Rajba, On the Ohlin lemma for Hermite–Hadamard–Fejér type inequalities, Math. Inequal. Appl. 17 (2014), no. 2, 557–571. 10.7153/mia-17-42Suche in Google Scholar

[11] T. Rajba, On some recent applications of stochastic convex ordering theorems to some functional inequalities for convex functions: A survey, Developments in functional equations and related topics, Springer Optim. Appl. 124, Springer, Cham (2017), 231–274. 10.1007/978-3-319-61732-9_11Suche in Google Scholar

[12] T. Rajba and S. Wa̧sowicz, Probabilistic characterization of strong convexity, Opuscula Math. 31 (2011), no. 1, 97–103. 10.7494/OpMath.2011.31.1.97Suche in Google Scholar

[13] A. W. Roberts and D. E. Varberg, Convex Functions, Pure Appl. Math. 57, Academic Press, New York, 1973. Suche in Google Scholar

[14] T. Szostok, Ohlin’s lemma and some inequalities of the Hermite–Hadamard type, Aequationes Math. 89 (2015), no. 3, 915–926. 10.1007/s00010-014-0286-2Suche in Google Scholar

Received: 2021-06-17
Revised: 2021-10-21
Accepted: 2021-11-01
Published Online: 2022-10-26
Published in Print: 2023-06-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2022-2011/html
Button zum nach oben scrollen