Startseite Ritz-least squares method for finding a control parameter in a one-dimensional parabolic inverse problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ritz-least squares method for finding a control parameter in a one-dimensional parabolic inverse problem

  • Meisam Noei Khorshidi und Sohrab Ali Yousefi EMAIL logo
Veröffentlicht/Copyright: 11. November 2016

Abstract

An inverse problem concerning a diffusion equation with source control parameter is considered. The approximation of the problem is based on the Ritz method with satisfier function. The Ritz method together with the least squares approximation (Ritz-least squares method) are utilized to reduce the inverse problem to the solution of algebraic equations. We extensively discuss the convergence of the method and finally present illustrative examples to demonstrate validity and applicability of the new technique.

MSC 2010: 65N21; 65N30

Acknowledgements

The authors are deeply grateful to the editor-in-chief and two anonymous referees for helpful comments and suggestions which led to a significant improvement of the original manuscript of this paper.

References

[1] Cannon J. R. and Lin Y., An inverse problem of finding a parameter in a semi-linear heat equation, J. Math. Anal. Appl. 145 (1990), no. 2, 470–484. 10.1016/0022-247X(90)90414-BSuche in Google Scholar

[2] Cannon J. R., Lin Y. and Wang S., Determination of source parameter in parabolic equations, Meccanica 27 (1992), 85–94. 10.1007/BF00420586Suche in Google Scholar

[3] Cannon J. R., Lin Y. and Xu S., Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations, Inverse Problems 10 (1994), 227–243. 10.1088/0266-5611/10/2/004Suche in Google Scholar

[4] Cannon J. R. and Yin H. M., On a class of non-classical parabolic problems, J. Differential Equations 79 (1989), no. 2, 266–288. 10.1016/0022-0396(89)90103-4Suche in Google Scholar

[5] Cannon J. R. and Yin H. M., Numerical solutions of some parabolic inverse problems, Numer. Methods Partial Differential Equations 2 (1990), 177–191. 10.1002/num.1690060207Suche in Google Scholar

[6] Cannon J. R. and Yin H. M., On a class of non-linear parabolic equations with non-linear trace type functionals inverse problems, Inverse Problems 7 (1991), 149–161. 10.1088/0266-5611/7/1/014Suche in Google Scholar

[7] Constantinides A., Applied Numerical Methods with Personal Computers, McGraw-Hill, New York, 1987. Suche in Google Scholar

[8] Dehghan M., An inverse problem of finding a source parameter in a semilinear parabolic equation, Appl. Math. Model. 25 (2001), 743–754. 10.1016/S0307-904X(01)00010-5Suche in Google Scholar

[9] Dehghan M., Fourth-order techniques for identifying a control parameter in the parabolic equations, Int. J. Eng. Sci. 40 (2002), 433–447. 10.1016/S0020-7225(01)00066-0Suche in Google Scholar

[10] Dehghan M., Numerical solution of one-dimensional parabolic inverse problem, Appl. Math. Comput. 136 (2003), 333–344. 10.1016/S0096-3003(02)00047-4Suche in Google Scholar

[11] Engl H. W., Hank M. and Neubauer A., Regularization of Inverse Problems, Math. Appl. 357, Kluwer, Dordrecht, 1996. 10.1007/978-94-009-1740-8Suche in Google Scholar

[12] Hansen P. C., Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998. 10.1137/1.9780898719697Suche in Google Scholar

[13] Lin Y. and Tait R. J., On a class of non-local parabolic boundary value problems, Int. J. Eng. Sci. 32 (1994), no. 3, 395–407. 10.1016/0020-7225(94)90130-9Suche in Google Scholar

[14] Macbain J. A., Inversion theory for a parameterized diffusion problem, SIAM J. Appl. Math. 18 (1987), 1386–1391. 10.1137/0147091Suche in Google Scholar

[15] Macbain J. A. and Bendar J. B., Existence and uniqueness properties for one-dimensional magnetotelluric inversion problem, J. Math. Phys. 27 (1986), 645–649. 10.1063/1.527219Suche in Google Scholar

[16] Prilepko A. I. and Orlovskii D. G., Determination of the evolution parameter of an equation and inverse problems of mathematical physics. I, J. Differential Equations 21 (1985), no. 1, 119–129. Suche in Google Scholar

[17] Prilepko A. I. and Soloev V. V., Solvability of the inverse boundary value problem of finding a coefficient of a lower order term in a parabolic equation, J. Differential Equations 23 (1987), no. 1, 136–143. Suche in Google Scholar

[18] Royden H. L., Real Analysis, 3rd ed., Macmillan, New York, 1988. Suche in Google Scholar

[19] Wang S., Numerical solutions of two inverse problems for identifying control parameters in 2-dimensional parabolic partial differential equations, Modern Dev. Numer. Simul. Flow Heat Transfer 194 (1992), 11–16. Suche in Google Scholar

[20] Wang S. and Lin Y., A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equations, Inverse Problems 5 (1989), 631–640. 10.1088/0266-5611/5/4/013Suche in Google Scholar

[21] Yousefi S. A., Finding a control parameter in a one-dimensional parabolic inverse problem by using the Bernstein Galerkin method, Inverse Probl. Sci. Eng. 17 (2009), no. 6, 821–828. 10.1080/17415970802583911Suche in Google Scholar

[22] Yousefi S. A., Lesnic D. and Barikbin Z., Satisfier function in Ritz-Galerkin method for the identification of a time-dependent diffusivity, J. Inverse III-Posed Probl. 20 (2012), 701–722. 10.1515/jip-2012-0020Suche in Google Scholar

Received: 2015-3-10
Revised: 2016-3-10
Accepted: 2016-10-18
Published Online: 2016-11-11
Published in Print: 2016-12-1

© 2016 by De Gruyter

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2016-0018/html
Button zum nach oben scrollen