Startseite Compactness result and its applications in integral equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Compactness result and its applications in integral equations

  • Mateusz Krukowski EMAIL logo und Bogdan Przeradzki
Veröffentlicht/Copyright: 22. November 2016

Abstract

A version of the Arzelà–Ascoli theorem for X being a σ-locally compact Hausdorff space is proved. The result is used in proving compactness of Fredholm, Hammerstein and Urysohn operators. Two fixed point theorems, for Hammerstein and Urysohn operators, are derived on the basis of Schauder fixed point theorem.

MSC 2010: 47H10; 47G10; 46E15

Acknowledgements

We would like to express our utmost gratitude to both referees for all comments and suggestions. The paper has benefited tremendously from all their remarks. With pleasure, we acknowledge the contribution of the referees.

References

[1] Benedetto J. J. and Czaja W., Integration and Modern Analysis, Birkhäuser, Boston, 2009. 10.1007/978-0-8176-4656-1Suche in Google Scholar

[2] Corduneanu C., Integral Equations and Applications, Cambridge University Press, Cambridge, 1991. 10.1017/CBO9780511569395Suche in Google Scholar

[3] Engelking R., General Topology, Polish Scientific Publishers, Warsaw, 1997. Suche in Google Scholar

[4] Kołodziej W., Wybrane rozdziały analizy matematycznej, Polish Scientific Publishers, Warsaw, 1982. Suche in Google Scholar

[5] Krasnosielskii M. A., Zabreiko P. P., Pustylnik E. I. and Sbolevskii P. E., Integral Operators in Spaces of Summable Functions, Noordhoff International Publishing, Leyden, 1976. 10.1007/978-94-010-1542-4Suche in Google Scholar

[6] Munkres J. R., Topology, Prentice Hall, Upper Saddle River, 2000. Suche in Google Scholar

[7] Porter D. and Stirling D. S. G., Integral Equations. A Practical Treatment, from Spectral Theory to Applications, Cambridge University Press, Cambridge, 1990. 10.1017/CBO9781139172028Suche in Google Scholar

[8] Przeradzki B., The existence of bounded solutions for differential equations in Hilbert spaces, Ann. Polon. Math. 56 (1992), no. 2, 103–121. 10.4064/ap-56-2-103-121Suche in Google Scholar

[9] Stańczy R., Hammerstein equation with an integral over noncompact domain, Ann. Polon. Math. 69 (1998), no. 1, 49–60. 10.4064/ap-69-1-49-60Suche in Google Scholar

[10] Zemyan S. M., The Classical Theory of Integral Equations, Birkhäuser, New York, 2012. 10.1007/978-0-8176-8349-8Suche in Google Scholar

Received: 2016-6-17
Revised: 2016-10-4
Accepted: 2016-10-13
Published Online: 2016-11-22
Published in Print: 2016-12-1

© 2016 by De Gruyter

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2016-0016/html
Button zum nach oben scrollen