Startseite Generalized slow growth of special monogenic functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generalized slow growth of special monogenic functions

  • Susheel Kumar EMAIL logo
Veröffentlicht/Copyright: 1. Mai 2016

Abstract

In the present paper we study the generalized slow growth of special monogenic functions. The characterizations of generalized order, generalized lower order, generalized type and generalized lower type of special monogenic functions have been obtained in terms of their Taylor series coefficients.

MSC: 30G35; 30D15

The author is very much indebted to the referees for their valuable comments which helped in improving the paper.

References

1 M. A. Abul-Ez and D. Constales, Basic sets of polynomials in Clifford analysis, Complex Var. Theory Appl. 14 (1990), 1–4, 177–185. 10.1080/17476939008814416Suche in Google Scholar

2 M. A. Abul-Ez and D. Constales, Linear substitution for basic sets of polynomials in Clifford analysis, Port. Math. 48 (1991), 2, 143–154. Suche in Google Scholar

3 M. A. Abul-Ez and R. De Almeida, On the lower order and type of entire axially monogenic function, Results Math. 63 (2013), 1257–1275. 10.1007/s00025-012-0267-5Suche in Google Scholar

4 R. De Almeida and R. S. Krausshar, On the asymptotic growth of entire monogenic functions, Z. Anal. Anwend. 24 (2005), 4, 791–813. 10.4171/ZAA/1268Suche in Google Scholar

5 D. Constales, R. De Almeida and R. S. Krausshar, On the growth type of entire monogenic functions, Arch. Math. (Basel) 88 (2007), 153–163. 10.1007/s00013-006-1790-ySuche in Google Scholar

6 D. Constales, R. De Almeida and R. S. Krausshar, On the relation between the growth and the Taylor coefficients of entire solutions to the higher dimensional Cauchy–Riemann system in ℝn+1, J. Math. Anal. App. 327 (2007), 763–775. 10.1016/j.jmaa.2006.04.055Suche in Google Scholar

7 V. G. Iyer, A property of the maximum modulus of integral functions, J. Indian Math. Soc. (N. S.) 6 (1942), 69–80. Suche in Google Scholar

8 G. P. Kapoor and A. Nautiyal, Polynomial approximation of an entire function of slow growth, J. Approx. Theory 32 (1981), 64–75. 10.1016/0021-9045(81)90022-8Suche in Google Scholar

9 S. Kumar, Generalized growth of special monogenic functions, J. Complex Anal. 2014 (2014), Article ID 510232. 10.1155/2014/510232Suche in Google Scholar

10 S. Kumar and K. Bala, Generalized type of entire monogenic functions of slow growth, Transylv. J. Math. Mech. 3 (2011), 2, 95–102. Suche in Google Scholar

11 S. Kumar and K. Bala, Generalized order of entire monogenic functions of slow growth, J. Nonlinear Sci. Appl. 5 (2012), 6, 418–425. 10.22436/jnsa.005.06.02Suche in Google Scholar

12 S. Kumar and K. Bala, Generalized growth of monogenic Taylor series of finite convergence radius, Ann. Univ. Ferrara Sez. VII Sci. Mat. 59 (2013), 1, 127–140. 10.1007/s11565-012-0161-9Suche in Google Scholar

13 S. Kumar and G. S. Srivastava, Maximum term and lower order of entire functions of several complex variables, Bull. Math. Anal. Appl. 3 (2011), 1, 156–164. Suche in Google Scholar

14 S. Kumar and G. S. Srivastava, On the maximum term and lower order of entire monogenic functions, Transylv. J. Math. Mech. 6 (2014), 1, 29–38. Suche in Google Scholar

15 M. N. Seremeta, On the connection between the growth of the maximum modulus of an entire function and the moduli of the coefficients of its power series expansion, Amer. Math. Soc. Transl. Ser. 2 88 (1970), 291–301. 10.1090/trans2/088/11Suche in Google Scholar

16 G. S. Srivastava and S. Kumar, On the generalized order and generalized type of entire monogenic functions, Demonstr. Math. 46 (2013), 4, 663–677. 10.1515/dema-2013-0484Suche in Google Scholar

Received: 2015-6-4
Revised: 2016-3-6
Accepted: 2016-3-19
Published Online: 2016-5-1
Published in Print: 2016-6-1

© 2016 by De Gruyter

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2016-0007/html
Button zum nach oben scrollen