Startseite Perspectives on data availability and market approaches to congestion management
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Perspectives on data availability and market approaches to congestion management

  • Bent Richter

    Bent Richter holds a Bachelor in economics from the Westfaelische Wilhelm University Muenster (WWU) and a Master in economics from the Albert-Ludwigs-University Freiburg. He is specialist in competition theory, regulation systems and information systems. His research focuses on the development of market mechanisms in the energy sector, the necessary information systems and the social impact of the energy transition.

    und Philipp Staudt

    Dr. Philipp Staudt heads the Smart Grid and Energy Market research group at the chair for Information and Market Engineering of the Karlsruhe Institute of Technology (KIT). His research interests are among others the design of energy markets, the experimental evaluation of market mechanisms and the application of data analytics to energy data. This includes congestion management in transmission and distribution grids, the design of local markets in microgrids, the public acceptance of the energy transition and the identificaiton of strategies in energy markets. He holds a Bachelor in Industrial Engineering and a Master in Mathematics and Economics from the KIT.

    ORCID logo EMAIL logo
Veröffentlicht/Copyright: 1. Oktober 2019

Abstract

Transmission grid congestion is one of the consequences of an increasing power generation from intermittent renewable capacities. These are often installed in the periphery and have rare generation peaks. It thus becomes more complicated to ensure a balanced grid operation at all times. It is necessary to develop holistic strategies for the management of congestion that consider short and long operating horizons. This paper introduces several congestion management mechanisms along minimal analytical and numerical models. These solutions are then discussed in regard to the necessary data availability and their contribution to an improved congestion management strategy. The paper therefore contributes to the development of a research agenda at the intercept between economists and computer scientists in the area of energy informatics.

ACM CCS:

Award Identifier / Grant number: 2153

Funding statement: This work was supported by the German Research Foundation (DFG) as part of the Research Training Group GRK 2153: Energy Status Data – Informatics Methods for its Collection, Analysis and Exploitation.

About the authors

Bent Richter

Bent Richter holds a Bachelor in economics from the Westfaelische Wilhelm University Muenster (WWU) and a Master in economics from the Albert-Ludwigs-University Freiburg. He is specialist in competition theory, regulation systems and information systems. His research focuses on the development of market mechanisms in the energy sector, the necessary information systems and the social impact of the energy transition.

Dr. Philipp Staudt

Dr. Philipp Staudt heads the Smart Grid and Energy Market research group at the chair for Information and Market Engineering of the Karlsruhe Institute of Technology (KIT). His research interests are among others the design of energy markets, the experimental evaluation of market mechanisms and the application of data analytics to energy data. This includes congestion management in transmission and distribution grids, the design of local markets in microgrids, the public acceptance of the energy transition and the identificaiton of strategies in energy markets. He holds a Bachelor in Industrial Engineering and a Master in Mathematics and Economics from the KIT.

References

1. Agentur für Erneuerbare Energien e. V. (2016). Metaanalyse Flexibilitaet durch Sektorenkopplung.Suche in Google Scholar

2. Agora Energiewende (2013). Stromverteilnetze fuer die Energiewende.Suche in Google Scholar

3. Barmack, M., Griffes, P., Kahn, E., and Oren, S. (2003). Performance incentives for transmission. The Electricity Journal, 16(3):9–22.10.1016/S1040-6190(03)00027-7Suche in Google Scholar

4. BDEW (2016). Erneuerbare Energien liefern mehr als ein Viertel des Stroms.Suche in Google Scholar

5. bdew (2018). Branchenleitfaden Vergütung von Redispatch- Maßnahmen.Suche in Google Scholar

6. Brunekreeft, G., Goto, M., Meyer, R., Maruyama, M., and Hattori, T. (2014). Unbundling of electricity transmission system operators in Germany: An experience report. Technical report, Bremen Energy Working Papers.Suche in Google Scholar

7. Bundesnetzagentur (2018a). Quartalsbericht zu Netz-und Systemsicherheitsmaßnahmen Gesamtjahr und viertel Quartal 2017. Technical report, Bundesnetzagentur, Bonn.Suche in Google Scholar

8. Bundesnetzagentur (2019). Quartalsbericht zu Netz-und Systemsicherheitsmaßnahmen Viertes Quartal und Gesamtjahr 2018. Technical report, Bundesnetzagentur, Bonn.Suche in Google Scholar

9. Bundesnetzagentur, B. (2018b). Monitoringbericht 2018.Suche in Google Scholar

10. Bundesregierung, D. (2016). Schriftliche Frage an die Bundesregierung durch Oliver Krischer.Suche in Google Scholar

11. Bundesregierung, D. (2018). Kleine Anfrage der Abgeordneten Nestle, Krischer, Verlinden.Suche in Google Scholar

12. Bundesverband der Energie- und Wasserwirtschaft e. V. (2018). Redispatch als Teil des marktlichen Engpassmanagements.Suche in Google Scholar

13. De Vries, L. J. and Hakvoort, R. A. (2002). An economic assessment of congestion management methods for electricity transmission networks. Journal of Network Industries, (4):425–466.10.1177/178359170200300403Suche in Google Scholar

14. Devine-Wright, P. (2013). Explaining “NIMBY” objections to a power line: The role of personal, place attachment and project-related factors. Environment and behavior, 45(6):761–781.10.1177/0013916512440435Suche in Google Scholar

15. European Commission (2016). Clean energy for all Europeans. COM (2016), 860.Suche in Google Scholar

16. Federal Ministry for Economic Affairs and Energy (2017). Erneuerbare Energien in Zahlen, nationale und internationale Entwicklung 2017.Suche in Google Scholar

17. Gan, D. and Bourcier, D. V. (2002). Locational market power screening and congestion management: experience and suggestions. IEEE Transactions on Power Systems, 17(1):180–185.10.1109/59.982211Suche in Google Scholar

18. Grimm, V., Martin, A., Sölch, C., Weibelzahl, M., and Zöttl, G. (2018). Market-Based Redispatch May Result in Inefficient Dispatch.10.2139/ssrn.3120403Suche in Google Scholar

19. Hirth, L. and Glismann, S. (2018). Congestion Management: From Physics to Regulatory Instruments.Suche in Google Scholar

20. Hirth, L. and Schlecht, I. (2018). Market-Based Redispatch in Zonal Electricity Markets.10.2139/ssrn.3286798Suche in Google Scholar

21. Hogan, W. (2002). Financial transmission right incentives: Applications beyond hedging. Presentation to HEPG Twenty-Eight Plenary Sessions, May, 31.Suche in Google Scholar

22. Holttinen, H., Meibom, P., Orths, A., Lange, B., O’Malley, M., Tande, J. O., Estanqueiro, A., Gomez, E., Söder, L., Strbac, G., et al.(2011). Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration. Wind Energy, 14(2):179–192.10.1002/we.410Suche in Google Scholar

23. Joos, M. and Staffell, I. (2018). Short-term integration costs of variable renewable energy: wind curtailment and balancing in Britain and Germany. Renewable and Sustainable Energy Reviews, 86:45–65.10.1016/j.rser.2018.01.009Suche in Google Scholar

24. Kemfert, C., Kunz, F., and Rosellón, J. (2016). A welfare analysis of electricity transmission planning in Germany. Energy Policy, 94:446–452.10.1016/j.enpol.2016.04.011Suche in Google Scholar

25. Komendantova, N. and Battaglini, A. (2016). Beyond Decide-Announce-Defend (DAD) and Not-in-My-Backyard (NIMBY) models? Addressing the social and public acceptance of electric transmission lines in Germany. Energy research & social science, 22:224–231.10.1016/j.erss.2016.10.001Suche in Google Scholar

26. Korte, K. and Gawel, E. (2018). Räumliche Koordination im liberalisierten Strommarkt: angemessene Anreize für die Einspeisung. Wirtschaftsdienst, 98(1):60–67.10.1007/s10273-018-2242-6Suche in Google Scholar

27. Leuthold, F., Weigt, H., and Von Hirschhausen, C. (2008). Efficient pricing for European electricity networks–The theory of nodal pricing applied to feeding-in wind in Germany. Utilities Policy, 16(4):284–291.10.1016/j.jup.2007.12.003Suche in Google Scholar

28. Matschoss, P., Bayer, B., Thomas, H., and Marian, A. (2019). The German incentive regulation and its practical impact on the grid integration of renewable energy systems. Renewable Energy, 134:727–738.10.1016/j.renene.2018.10.103Suche in Google Scholar

29. Mester, K. A., Christ, M., Degel, M., and Bunke, W.-D. (2017). Integrating social acceptance of electricity grid expansion into energy system modeling: a methodological approach for Germany. In Advances and New Trends in Environmental Informatics, pages 115–129. Springer.10.1007/978-3-319-44711-7_10Suche in Google Scholar

30. Döring, Michael (2018). Rolle der Verteilnetzbetreiber bei der zukünftigen Netzengpassbehebung.Suche in Google Scholar

31. Nüßler, A. (2012). Congestion and redispatch in Germany. A model-based analysis of the development of redispatch. PhD thesis, Universität zu Köln.Suche in Google Scholar

32. Ott, A. L. (2003). Experience with PJM market operation, system design, and implementation. IEEE Transactions on Power Systems, 18(2):528–534.10.1109/TPWRS.2003.810698Suche in Google Scholar

33. Pechan, A. (2017). Where do all the windmills go? Influence of the institutional setting on the spatial distribution of renewable energy installation. Energy Economics, 65:75–86.10.1016/j.eneco.2017.04.034Suche in Google Scholar

34. Qin, J., Rajagopal, R., and Varaiya, P. P. (2017). Flexible Market for Smart Grid: Coordinated Trading of Contingent Contracts. IEEE Transactions on Control of Network Systems, 1.10.1109/TCNS.2017.2746347Suche in Google Scholar

35. Rausch, B., Staudt, P., and Weinhardt, C. (2019). Transmission grid congestion data and directions for future research. In Proceedings of the Tenth ACM International Conference on Future Energy Systems, pages 443–446. ACM.10.1145/3307772.3331018Suche in Google Scholar

36. Reusswig, F., Braun, F., Heger, I., Ludewig, T., Eichenauer, E., and Lass, W. (2016). Against the wind: Local opposition to the German Energiewende. Utilities Policy, 41:214–227.10.1016/j.jup.2016.02.006Suche in Google Scholar

37. Richstein, J. C., Neuhoff, K., and May, N. (2018). Europe’s power system in transition: How to couple zonal and locational pricing systems?Suche in Google Scholar

38. Rubio-Odériz, F. J. and Perez-Arriaga, I. J. (2000). Marginal pricing of transmission services: A comparative analysis of network cost allocation methods. IEEE Transactions on Power systems, 15(1):448–454.10.1109/59.852158Suche in Google Scholar

39. Sauma, E. E. and Oren, S. S. (2009). Do generation firms in restructured electricity markets have incentives to support social-welfare-improving transmission investments? Energy Economics, 31(5):676–689.10.1016/j.eneco.2009.01.015Suche in Google Scholar

40. Schermeyer, H., Vergara, C., and Fichtner, W. (2018). Renewable energy curtailment: A case study on today’s and tomorrow’s congestion management. Energy Policy, 112:427–436.10.1016/j.enpol.2017.10.037Suche in Google Scholar

41. Schmitz, K. and Weber, C. (2013). Does one design fit all? On the transferability of the PJM market design to the German electricity market.10.2139/ssrn.2256864Suche in Google Scholar

42. Sensfuß, F., Ragwitz, M., and Genoese, M. (2008). The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy policy, 36(8):3086–3094.10.1016/j.enpol.2008.03.035Suche in Google Scholar

43. Staudt, P., Garttner, J., Richter, B., and Weinhardt, C. (2018a). Liberalized markets for power transmission capacity. In 2018 15th International Conference on the European Energy Market (EEM), pages 1–5. IEEE.10.1109/EEM.2018.8469915Suche in Google Scholar

44. Staudt, P., Gärttner, J., and Weinhardt, C. (2018b). Assessment of Market Power in Local Electricity Markets with regards to Competition and Tacit Collusion. Tagungsband Multikonferenz Wirtschaftsinformatik 2018, 912–923.Suche in Google Scholar

45. Staudt, P., Golla, A., Richter, B., Schmidt, M., vom Scheidt, F., and Weinhardt, C. (2019a). Behavioral studies in energy economics: A review and research framework. In Local Energy, Global Markets, 42nd IAEE International Conference, May 29–June 1, 2019. International Association for Energy Economics.Suche in Google Scholar

46. Staudt, P., Köpke, S., and Weinhardt, C. (2019b). Market mechanisms for neighbourhood electricity grids: Design and agent-based evaluation. In Twenty-Seventh European Conference on Information Systems (ECIS2019), Stockholm, Sweden.Suche in Google Scholar

47. Staudt, P., Schmidt, M., Gärttner, J., and Weinhardt, C. (2018c). Using vehicle-to-grid concepts to balance redispatch needs: A case study in germany. In Proceedings of the Ninth International Conference on Future Energy Systems, pages 80–84. ACM.10.1145/3208903.3208926Suche in Google Scholar

48. Staudt, P., Traeris, Y., Rausch, B., and Weinhardt, C. (2018d). Predicting Redispatch in the German Electricity Market using Information Systems based on Machine Learning.Suche in Google Scholar

49. Stoft, S. (2002). Power system economics. Journal of Energy Literature, 8:94–99.10.1109/9780470545584Suche in Google Scholar

50. Trepper, K., Bucksteeg, M., and Weber, C. (2015). Market splitting in Germany–New evidence from a three-stage numerical model of Europe. Energy Policy, 87:199–215.10.1016/j.enpol.2015.08.016Suche in Google Scholar

51. Umweltbundesamt (2019). Energiebedingte Emissionen.Suche in Google Scholar

52. Weinhardt, C., Holtmann, C., and Neumann, D. (2003). Market-engineering. Wirtschaftsinformatik, 45(6):635–640.10.1007/BF03250926Suche in Google Scholar

53. Wu, F. F. and Varaiya, P. (1999). Coordinated multilateral trades for electric power networks: theory and implementation. International Journal of Electrical Power & Energy Systems, 21(2):75–102.10.1016/S0142-0615(98)00031-3Suche in Google Scholar

Received: 2018-06-18
Revised: 2019-08-14
Accepted: 2019-09-03
Published Online: 2019-10-01
Published in Print: 2019-04-24

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/itit-2019-0020/html
Button zum nach oben scrollen