Startseite Chicken feather protein for the thermal stability and combustion performance of rigid polyurethane foam
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chicken feather protein for the thermal stability and combustion performance of rigid polyurethane foam

  • Xu Zhang EMAIL logo , Simiao Sun , Dehe Yuan , Zhi Wang , Hua Xie und Zhanpeng Su
Veröffentlicht/Copyright: 18. Juli 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Rigid polyurethane foams (RPUFs) were synthesized with chicken feather protein using the “one-step method” of all-water foaming. Thermogravimetry, pyrolysis kinetics analysis, Cone calorimetry and smoke density (Ds) were used to investigate the effects of chicken feather protein on thermal stability and combustion performance of RPUFs. The results showed that the modified RPUFs with 2.5 wt% chicken feather protein (RPUF-CF1) had the lowest mass loss, the highest integrated program pyrolysis temperature, the highest activation energy, the lowest Ds (13.3), the highest light transmittance (79.3 %), the lowest heat release rate (22.0 kW/m2 and 30.6 kW/m2) and total heat release (2.4 MJ/m2 and 2.8 MJ/m2), which indicated that RPUF-CF1 had better thermal stability and combustion performance. The current research results provide a useful reference for the preparation of RPUFs with good thermal stability by bio-based modification.


Corresponding author: Xu Zhang, Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang 110136, China; and School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The financial support from Scientific Research Fund of Liaoning Provincial Education Department (Grant No. JYT2020011) is greatly acknowledged.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Costes, L., Laoutid, F., Brohez, S., and Dubois, P. (2017). Bio-based flame retardants: when nature meets fire protection. Mater. Sci. Eng. R. Rep. 117: 1–25, https://doi.org/10.1016/j.mser.2017.04.001.Suche in Google Scholar

Coats, A.W. and Redfern, J.P. (1964). Kinetic parameters from the thermogravimetric data. Nature 201: 68–69, https://doi.org/10.1038/201068a0.Suche in Google Scholar

Guida, M.Y., Bouaik, H., EI Mouden, L., Moubarik, A., Aboulkas, A., EI Harfi, K., and Hannioui, A. (2017). Utilization of starink approach and avrami theory to evaluate the kinetic parameters of the pyrolysis of olive mill solid waste and olive mill wastewater. J. Adv. Chem. Eng. 7: 1–8, https://doi.org/10.4172/2090-4568.1000155.Suche in Google Scholar

Huang, L.L., Shen, Z.C., Chen, X.C., Xu, Q., and Zhang, D.W. (2015). Study on pyrolysis characteristics of PU insulation materials in air. Shandong Chem. Ind. 44: 18–21, https://doi.org/10.19319/j.cnki.issn.1008-021x.2015.10.007.Suche in Google Scholar

John, R. and HallJr. (2005). Evaluation of fire safety by D. Rasbash, G. Ramachandran, B. Kandola, J. Watts, and M. Law. Fire Technol. 41: 67–70, https://doi.org/10.1007/s10694-005-4630-x.Suche in Google Scholar

Kissinger, H.H.E. (1957). Reaction kinetics in differential thermal analysis. Anal. Chem. 29: 1702–1706, https://doi.org/10.1021/ac60131a045.Suche in Google Scholar

Meng, D., Guo, J., Wang, A.J., Gu, X.Y., Wang, Z.W., Jiang, S.L., and Zhang, S. (2020). The fire performance of polyamide66 fabric coated with soybean protein isolation. Prog. Org. Coat. 148: 105835, https://doi.org/10.1016/j.porgcoat.2020.105835.Suche in Google Scholar

Meng, X.L., Huang, Y.D., Yu, H., and Lv, Z.S. (2007). Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polym. Degrad. Stabil. 92: 962–967, https://doi.org/10.1016/j.polymdegradstab.2007.03.005.Suche in Google Scholar

Mustata, F., Tudorachi, N., and Bicu, L. (2015). The kinetic study and thermal characterization of epoxy resins crosslinked with amino carboxylic acids. J. Anal. Appl. Pyro. 112: 180–191, https://doi.org/10.1016/j.jaap.2015.01.030.Suche in Google Scholar

Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38: 1881–1886, https://doi.org/10.1016/j.mser.2008.09.002.Suche in Google Scholar

Parcheta, P., Koltsov, I., and Datta, J. (2018). Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis. Polym. Degrad. Stab. 151: 90–99, https://doi.org/10.1016/j.polymdegradstab.2018.03.002.Suche in Google Scholar

Sanchezolivares, G., Sanchezsolis, A., Calderas, F., and Alongi, J. (2017). Keratin fibres derived from tannery industry wastes for flame retarded PLA composites. Polym. Degrad. Stabil. 140: 42–54, https://doi.org/10.1016/j.polymdegradstab.2017.04.011.Suche in Google Scholar

Tang, Z., Maroto-Valer, M.M., Andrésen, J.M., Miller, J.W., Listemann, M.L., McDaniel, P.L., Morita, D.K., and Furlan, W.R. (2002). Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agents. Polym 43: 6471–6479, https://doi.org/10.1016/S0032-3861(02)00602-X.Suche in Google Scholar

Wang, R., Song, W.S., Hao, L., and Li, D. (2015). Research progress in heat resistance of polyurethane. Plast. Sci. Technol. 43: 101–105, https://doi.org/10.15925/j.cnki.issn1005-3360.2015.12.017.Suche in Google Scholar

Wang, X.Y., Lu, C.Q., and Chen, C.X. (2014). Effect of chicken-feather protein-based flame retardant on flame retarding performance of cotton fabric. J. Appl. Polym. Sci. 131: 40584, https://doi.org/10.1002/app.40584.Suche in Google Scholar

Wang, Y.H., Liu, C., Lai, J.J., Lu, C.L., Wu, X.M., Cai, Y.Q., Gu, L.Q., Yang, L.T., Zhang, G.H., and Shi, G. (2020). Soy protein and halloysite nanotubes-assisted preparation of environmentally friendly intumescent flame retardant for poly(butylene succinate). Polym. Test. 81: 106174, https://doi.org/10.1016/j.polymertesting.2019.106174.Suche in Google Scholar

Yao, Z.T., Yu, S.Q., Su, W.P., Wu, W.H., Tang, J.H., and Qi, W. (2020). Comparative study on the pyrolysis kinetics of polyurethane foam from waste refrigerators. Waste Manag. Res. 38: 271–278, https://doi.org/10.1177/0734242X19877682.Suche in Google Scholar PubMed

Zhang, X., Xu, C., Wang, Z., and Xie, H. (2023a). Fabrication of flame-retardant and smoke suppressant rigid polyurethane foam modified by hydrolyzed keratin. Int. Polym. Process. 38: 257–266, https://doi.org/10.1515/ipp-2022-4303.Suche in Google Scholar

Zhang, X., Yuan, D.H., Sun, S.M., Li, H.D., Wang, Z., and Xie, H. (2023b). Study on the thermal stability and combustion performance of polyurethane foams modified by manganese phytate. Int. Polym. Process. 38: 300–309, https://doi.org/10.1515/ipp-2022-4278.Suche in Google Scholar

Zhang, X., Chen, L., Huang, X.D., Zhi, H.Z., and Yang, J.F. (2020). Research of flame retardancy of polyurethane and its application progress. Plast. Addit. 1: 1–10, https://doi.org/10.3969/j.issn.1672-6294.2020.01.0001.Suche in Google Scholar

Zhang, X., Xu, C., Zhu, Z.Y., Wang, Z., and Xie, H. (2021a). Synergistic effect of strontium stannate and ammonium polyphosphate on flame-retardant and smoke-suppressant of flexible polyurethane foam. Int. J. Polym. Anal. Charact. 26: 517–531, https://doi.org/10.1080/1023666X.2021.1916727.Suche in Google Scholar

Zhang, X., Wen, Y.Q., Li, S., Wang, Z., and Xie, H. (2021b). Fabrication and characterization of flame-retardant and smoke-suppressant of flexible polyurethane foam with modified hydrotalcite. Polym. Advan. Technol. 32: 2609–2621, https://doi.org/10.1002/pat.5292.Suche in Google Scholar

Zhang, X., Sun, S.M., Liu, B., Wang, Z., and Xie, H. (2022). Synergistic effect of combining amino trimethylphosphonate calcium and expandable graphite on flame retardant and thermal stability of rigid polyurethane foam. Int. J. Polym. Anal. Charact. 27: 302–315, https://doi.org/10.1080/1023666X.2022.2070694.Suche in Google Scholar

Zhang, X., Li, S., Wang, Z., Sun, G.H., and Hu, P. (2020a). Thermal stability of flexible polyurethane foams containing modified layered double hydroxides and zinc borate. Int. J. Polym. Anal. Charact. 25: 499–516, https://doi.org/10.1080/1023666X.2020.1812920.Suche in Google Scholar

Zhang, X., Li, S., Wang, Z., and Wang, D.L. (2020b). Study on thermal stability of typical carbon fiber epoxy composites after airworthiness fire protection test. Fire Mater. 44: 202–210, https://doi.org/10.1002/fam.2788.Suche in Google Scholar

Zhang, F., Zhang, J., and Jiao, C.M. (2008). Study on char structure of intumescent flame-retardant polypropylene. Polym. Plast. Technol. Eng. 47: 1179–1186, https://doi.org/10.1080/03602550802392001.Suche in Google Scholar

Received: 2023-03-06
Accepted: 2023-06-16
Published Online: 2023-07-18
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2023-4364/html
Button zum nach oben scrollen