Startseite Experimental analysis of localized hybridization by means of adding woven polyester strip
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental analysis of localized hybridization by means of adding woven polyester strip

  • M. Chithambara Thanu ORCID logo , M. Appadurai ORCID logo , E. Fantin Irudaya Raj ORCID logo EMAIL logo und T. Lurthu Pushparaj ORCID logo
Veröffentlicht/Copyright: 4. Juli 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Natural fiber-reinforced composites must be hybridized with synthetic fibers to enhance their mechanical strength. They are appropriate for structural applications after hybridizing with more than 40 % of synthetic fibers. The hybrid composite becomes a partly biodegradable material due to the blend of natural fibers. The localized hybridization approach has been used to minimize the quantity of synthetic fiber used in hybridization. The region around the drilled hole of a composite has been identified as stress concentrated region. In that stress-concentrated region, a polyester strip of different widths is deployed to reinforce it to reduce the delamination occurrence. The present work deals with Jute Fiber reinforced unsaturated polyester resin with local hybridization of woven polyester made up of Perma Core T-18 polyester fiber strands. The interfacial shear and tensile strengths are evaluated for the proposed composite. The results revealed that the yield strength of the proposed composite increased from 18.32 MPa to 29.62 MPa due to local hybridization. The increment of 69.24 % in yield strength is more significant for structural applications.


Corresponding author: E. Fantin Irudaya Raj, Department of Electrical and Electronics Engineering, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur, Tamil Nadu, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors declare that they received no funds from any organization for this research.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ahmed, K.S., Vijayarangan, S., and Naidu, A.C.B. (2007). Elastic properties, notched strength and fracture criterion in untreated woven jute–glass fabric reinforced polyester hybrid composites. Mater. Des. 28: 2287–2294, https://doi.org/10.1016/j.matdes.2006.08.002.Suche in Google Scholar

Amaro, A.M., Reis, P.N.B., De Moura, M.F.S.F., and Neto, M.A. (2013). Influence of open holes on composites delamination induced by low velocity impact loads. Compos. Struct. 97: 239–244, https://doi.org/10.1016/j.compstruct.2012.09.041.Suche in Google Scholar

Appadurai, M., Fantin Irudaya Raj, E., and Lurthu Pushparaj, T. (2022). Sisal fiber-reinforced polymer composite-based small horizontal axis wind turbine suited for urban applications—a numerical study. Emergent Mater. 5: 565–578, https://doi.org/10.1007/s42247-022-00375-x.Suche in Google Scholar

Bailey, R. and Hicks, R. (1960). Behaviour of perforated plates under plane stress. J. Mech. Eng. Sci. 2: 143–165, https://doi.org/10.1243/jmes_jour_1960_002_023_02.Suche in Google Scholar

Beakou, A., Ntenga, R., Lepetit, J., Ateba, J.A., and Ayina, L.O. (2008). Physico-chemical and microstructural characterization of “Rhectophyllum camerunense” plant fiber. Compos. Appl. Sci. Manuf. 39: 67–74, https://doi.org/10.1016/j.compositesa.2007.09.002.Suche in Google Scholar

Conrad, C.M. (1944). Determination of wax in cotton fiber a new alcohol extraction method. Ind. Eng. Chem. 16: 745–748, https://doi.org/10.1021/i560136a007.Suche in Google Scholar

Cordeiro, N., Gouveia, C., and John, M.J. (2011). Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography. Ind. Crops Prod. 33: 108–115, https://doi.org/10.1016/j.indcrop.2010.09.008.Suche in Google Scholar

Das, O., Babu, K., Shanmugam, V., Sykam, K., Tebyetekerwa, M., Neisiany, R.E., Försth, M., Sas, G., Gonzalez-Libreros, J., Capezza, A.J., et al.. (2022). Natural and industrial wastes for sustainable and renewable polymer composites. Renew. Sustain. Energy Rev. 158: 112054, https://doi.org/10.1016/j.rser.2021.112054.Suche in Google Scholar

Deryugin, E.E. (2022). Crack model with plastic strain gradients. Phys. Mesomech. 25: 227–247, https://doi.org/10.55652/1683-805x_2022_25_1_43.Suche in Google Scholar

El-baky, A. (2017). Evaluation of mechanical properties of jute/glass/carbon fibers reinforced hybrid composites. Fibers Polym. 18: 2417–2432, https://doi.org/10.1007/s12221-017-7682-x.Suche in Google Scholar

Fantin Irudaya Raj, E., Appadurai, M., Lurthu Pushparaj, T., and Chithambara Thanu, M. (2023). Wind turbines with aramid fiber composite wind blades for smart cities like urban environments: numerical simulation study. MRS Energy Sustain. 10: 139–156, https://doi.org/10.1557/s43581-022-00060-w.Suche in Google Scholar

Gassan, J. (2002). A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites. Compos. Appl. Sci. Manuf. 33: 369–374, https://doi.org/10.1016/s1359-835x(01)00116-6.Suche in Google Scholar

Gigante, V., Aliotta, L., Phuong, V.T., Coltelli, M.B., Cinelli, P., and Lazzeri, A. (2017). Effects of waviness on fiber-length distribution and interfacial shear strength of natural fibers reinforced composites. Compos. Sci. Technol. 152: 129–138, https://doi.org/10.1016/j.compscitech.2017.09.008.Suche in Google Scholar

Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., van Vuure, A., Lomov, S., and Verpoest, I. (2010). Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 70: 1346–1352, https://doi.org/10.1016/j.compscitech.2010.04.010.Suche in Google Scholar

Guo, Z., Zhu, X., Sun, H., and Li, A. (2023). Adjusting machined surface integrity of aluminum–silicon alloy through step-by-step feed cutting and multi-step finish cutting method. Int. J. Adv. Des. Manuf. Technol. 126: 3267–3281, https://doi.org/10.1007/s00170-023-11327-y.Suche in Google Scholar

Herrera-Franco, P.J. and Valadez-Gonzalez, A. (2004). Mechanical properties of continuous natural fibre-reinforced polymer composites. Compos. Appl. Sci. Manuf. 35: 339–345, https://doi.org/10.1016/j.compositesa.2003.09.012.Suche in Google Scholar

Ho, M.P., Wang, H., Lee, J.H., Ho, C.K., Lau, K.T., Leng, J., and Hui, D. (2012). Critical factors on manufacturing processes of natural fibre composites. Composites, Part B 43: 3549–3562, https://doi.org/10.1016/j.compositesb.2011.10.001.Suche in Google Scholar

Jariwala, H. and Jain, P. (2019). A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J. Reinf. Plast. Compos. 38: 441–453, https://doi.org/10.1177/0731684419828524.Suche in Google Scholar

Jawaid, M., Khalil, H.A., and Bakar, A.A. (2011). Woven hybrid composites: tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Mater. Sci. Eng., A 528: 5190–5195, https://doi.org/10.1016/j.msea.2011.03.047.Suche in Google Scholar

Jenish, I., Sahayaraj, A.F., Suresh, V., Mani Raj, J., Appadurai, M., Irudaya Raj, E.F., Nasif, O., Alfarraj, S., and Kumaravel, A.K. (2022). Analysis of the hybrid of mudar/snake grass fiber-reinforced epoxy with nano-silica filler composite for structural application. Adv. Mater. Sci. Eng. 2022: 1–10, https://doi.org/10.1155/2022/7805146.Suche in Google Scholar

John, K. and Naidu, S.V. (2004). Effect of fiber content and fiber treatment on flexural properties of sisal fiber/glass fiber hybrid composites. J. Reinforc. Plast. Compos. 23: 1601–1605, https://doi.org/10.1177/0731684404039799.Suche in Google Scholar

Kabir, M.M., Wang, H., Lau, K.T., and Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites, Part B 43: 2883–2892, https://doi.org/10.1016/j.compositesb.2012.04.053.Suche in Google Scholar

Khashaba, U.A. and Khdair, A.I. (2017). Open hole compressive elastic and strength analysis of CFRE composites for aerospace applications. Aero. Sci. Technol. 60: 96–107, https://doi.org/10.1016/j.ast.2016.10.026.Suche in Google Scholar

Kou, H.L., Liu, J.H., Zhang, P., Wu, C., Ni, P., and Wang, D. (2022). Ecofriendly improvement of coastal calcareous sandy slope using recycled shredded coconut coir (RSC) and bio-cement. Acta Geotechn. 17: 5375–5389, https://doi.org/10.1007/s11440-022-01560-2.Suche in Google Scholar

Kureemun, U., Ravandi, M., Tran, L.Q.N., Teo, W.S., Tay, T.E., and Lee, H.P. (2018). Effects of hybridization and hybrid fibre dispersion on the mechanical properties of woven flax-carbon epoxy at low carbon fibre volume fractions. Composites, Part B 134: 28–38, https://doi.org/10.1016/j.compositesb.2017.09.035.Suche in Google Scholar

Li, X., Tabil, L.G., and Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ. 15: 25–33, https://doi.org/10.1007/s10924-006-0042-3.Suche in Google Scholar

Mishra, S., Mohanty, A.K., Drzal, L.T., Misra, M., Parija, S., Nayak, S.K., and Tripathy, S.S. (2003). Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos. Sci. Technol. 63: 1377–1385, https://doi.org/10.1016/s0266-3538(03)00084-8.Suche in Google Scholar

Msahli, S., Jaouadi, M., Sakli, F., and Drean, J.Y. (2015). Study of the mechanical properties of fibers extracted from Tunisian Agave americana L. J. Nat. Fibers 12: 552–560, https://doi.org/10.1080/15440478.2014.984046.Suche in Google Scholar

Nechifor, M., Tanasă, F., Teacă, C.A., and Şulea, D. (2022). Maleated coupling agents for the surface treatment of natural fibers. Surf. Treat. Methods Nat. Fibres Effects Biocompos. 95–123, https://doi.org/10.1016/B978-0-12-821863-1.00005-3.Suche in Google Scholar

Oksman, K., Skrifvars, M., and Selin, J.F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63: 1317–1324, https://doi.org/10.1016/s0266-3538(03)00103-9.Suche in Google Scholar

Pandey, J.K., Ahn, S.H., Lee, C.S., Mohanty, A.K., and Misra, M. (2010). Recent advances in the application of natural fiber based composites. Macromol. Mater. Eng. 295: 975–989, https://doi.org/10.1002/mame.201000095.Suche in Google Scholar

Pandita, S.D., Nishiyabu, K., and Verpoest, I. (2003). Strain concentrations in woven fabric composites with holes. Compos. Struct. 59: 361–368, https://doi.org/10.1016/s0263-8223(02)00242-8.Suche in Google Scholar

Payal, R. (2022). Green composites: versatile uses and applications in life. Green Sustain. Process Chem. Environ. Eng. Sci. 165–193, https://doi.org/10.1016/b978-0-323-99643-3.00002-4.Suche in Google Scholar

Pearl, I.A. (1967). The chemistry of lignin. Edward Arnold (Publishers) Ltd., London, p. 339.Suche in Google Scholar

Rajakumar, I., Raguraman, D., Isaac, J.S., Suthan, R., Bhattacharya, S., Seikh, A.H., Khan, S.M.A., and Raghavan, I.K. (2022). Mechanical properties of polymer composites reinforced with alkaline-treated natural fibre. Adv. Polym. Technol. 2022: 1–7, https://doi.org/10.1155/2022/1458547.Suche in Google Scholar

Rao, K.M.M., Rao, K.M., and Prasad, A.R. (2010). Fabrication and testing of natural fibre composites: vakka, sisal, bamboo and banana. Mater. Des. 31: 508–513, https://doi.org/10.1016/j.matdes.2009.06.023.Suche in Google Scholar

Richardson, S. and Gorton, L. (2003). Characterisation of the substituent distribution in starch and cellulose derivatives. Anal. Chim. Acta 497: 27–65, https://doi.org/10.1016/j.aca.2003.08.005.Suche in Google Scholar

Salman, S.D., Leman, Z., Ishak, M.R., Sultan, M.T.H., and Cardona, F. (2018). Quasi-static penetration behavior of plain woven kenaf/aramid reinforced polyvinyl butyral hybrid laminates. J. Ind. Textil. 47: 1427–1446, https://doi.org/10.1177/1528083717692593.Suche in Google Scholar

Santulli, C. (2022). Thermal properties of flax fiber hybrid composites. Nat. Fiber‐Reinforc. Compos. Therm. Prop. Appl. 93–105, https://doi.org/10.1002/9783527831562.ch6.Suche in Google Scholar

Sawpan, M.A., Pickering, K.L., and Fernyhough, A. (2011). Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos. Appl. Sci. Manuf. 42: 888–895, https://doi.org/10.1016/j.compositesa.2011.03.008.Suche in Google Scholar

Sreenivasan, V.S., Ravindran, D., Manikandan, V., and Narayanasamy, R. (2012). Influence of fibre treatments on mechanical properties of short Sansevieria cylindrica/polyester composites. Mater. Des. 37: 111–121, https://doi.org/10.1016/j.matdes.2012.01.004.Suche in Google Scholar

Sreenivasan, V.S., Somasundaram, S., Ravindran, D., Manikandan, V., and Narayanasamy, R. (2011). Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres–an exploratory investigation. Mater. Des. 32: 453–461, https://doi.org/10.1016/j.matdes.2010.06.004.Suche in Google Scholar

Summerscales, J., Dissanayake, N.P., Virk, A.S., and Hall, W. (2010). A review of bast fibres and their composites. Part 1–fibres as reinforcements. Compos. Appl. Sci. Manuf. 41: 1329–1335, https://doi.org/10.1016/j.compositesa.2010.06.001.Suche in Google Scholar

Tezara, C., Zalinawati, M., Siregar, J.P., Jaafar, J., Hamdan, M.H.M., Oumer, A.N., and Chuah, K.H. (2022). Effect of stacking sequences, fabric orientations, and chemical treatment on the mechanical properties of hybrid woven jute–ramie composites. Int. J. Precis. Eng. Manuf.-Green Technol. 9: 273–285, https://doi.org/10.1007/s40684-021-00311-0.Suche in Google Scholar

Toubal, L., Karama, M., and Lorrain, B. (2005). Stress concentration in a circular hole in composite plate. Compos. Struct. 68: 31–36, https://doi.org/10.1016/j.compstruct.2004.02.016.Suche in Google Scholar

Valadez-Gonzalez, A., Cervantes-Uc, J.M., Olayo, R.J.I.P., and Herrera-Franco, P.J. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites, Part B 30: 309–320, https://doi.org/10.1016/s1359-8368(98)00054-7.Suche in Google Scholar

Wambua, P., Ivens, J., and Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63: 1259–1264, https://doi.org/10.1016/s0266-3538(03)00096-4.Suche in Google Scholar

Xu, L., Xiao, J., and Zhou, S. (2022). Study on the aging properties of 3D woven composites under corrosive conditions. High Perform. Polym. 35: 494–507, https://doi.org/10.1177/09540083221146924.Suche in Google Scholar

Xu, X.W., Man, H.C., and Yue, T.M. (2000). Strength prediction of composite laminates with multiple elliptical holes. Int. J. Solids Struct. 37: 2887–2900, https://doi.org/10.1016/s0020-7683(99)00033-5.Suche in Google Scholar

Yahaya, R., Sapuan, S.M., Jawaid, M., Leman, Z., and Zainudin, E.S. (2016). Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Defence Technol. 12: 52–58, https://doi.org/10.1016/j.dt.2015.08.005.Suche in Google Scholar

Yudhanto, A., Iwahori, Y., Watanabe, N., and Hoshi, H. (2012). Open hole fatigue characteristics and damage growth of stitched plain weave carbon/epoxy laminates. Int. J. Fatigue 43: 12–22, https://doi.org/10.1016/j.ijfatigue.2012.02.002.Suche in Google Scholar

Zhang, N., Yan, C., Li, L., and Khan, M. (2022). Assessment of fiber factor for the fracture toughness of polyethylene fiber reinforced geopolymer. Constr. Build. Mater. 319: 126130, https://doi.org/10.1016/j.conbuildmat.2021.126130.Suche in Google Scholar

Received: 2023-01-24
Accepted: 2023-05-16
Published Online: 2023-07-04
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2023-4339/pdf?lang=de
Button zum nach oben scrollen