Home The impact of accelerated aging on the mechanical and thermal properties and VOC emission of polypropylene composites reinforced with glass fibers
Article
Licensed
Unlicensed Requires Authentication

The impact of accelerated aging on the mechanical and thermal properties and VOC emission of polypropylene composites reinforced with glass fibers

  • Annette Rüppel , Susanne Wolff EMAIL logo and Hans-Peter Heim
Published/Copyright: December 5, 2022
Become an author with De Gruyter Brill

Abstract

This paper presents the impact of accelerated aging on selected mechanical and thermal properties and VOC emission of polypropylene composites filled with glass fiber with different fiber contents. Due to their positive properties (good thermal and mechanical properties, low weight), glass fiber reinforced thermoplastics are becoming increasingly important. Fiber reinforced thermoplastics are mainly produced by injection molding and extrusion, whereby the extrusion compounding process is primarily used to prepare fiber-filled granulates while the injection molding process is used to manufacture products. In this study, short glass fiber reinforced thermoplastics (polypropylene) are produced on a twin screw extruder. Then, tensile test specimens are produced by injection molding. The glass fiber content is between 20 and 40 wt%. In order to investigate the long-term stability, the test specimens are artificially aged in accordance with ASTM 1980. The thermal, mechanical, and emission properties were evaluated by means of differential scanning calorimetry (DSC), tensile tests, and TDS-GC-MS analysis prior to and after accelerated aging. The objective of this study was to investigate the effects of thermal aging on crystallinity and mechanical properties and on VOC emission of glass fiber reinforced isotactic polypropylene.


Corresponding author: Susanne Wolff, Institute of Material Engineering, Polymer Engineering, University of Kassel, Moenchebergstrasse 3, 34125, Kassel, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We would like to express special thanks the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant number HE 3020/19-1 for providing a portion of the funding for these studies.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Affolter, S. (2021). Langzeitverhalten von Thermoplasten. Online Publication. Fachhochschule Ostschweiz, Switzerland, Available at: https://www.ost.ch/fileadmin/dateiliste/3_forschung_dienstleistung/institute/iwk/materialanalyse_und_bauteilpruefung/fachbeitraege/langzeitverhalten_ost-hsr_2021.pdf.Search in Google Scholar

Allen, N.S., Edge, M., He, J., Chen, W., Kikkawa, K., and Minagawa, M. (1994). Effect of processing on the thermal and photooxidative behaviour of 2-hydrobenzophenone stabilisers in polyolefine films: influece of 2, 2, 6, 6-tetramethylpiperidine polymer degradation and stability. Polym. Degrad. Stab. 44: 99–105, https://doi.org/10.1016/0141-3910(94)90039-6.Search in Google Scholar

Angermaier, B. (2000). Smell and emissions of natural fibre composites in car industry. In: 3rd international Wood and natural fibre composites symposium. Kassel, Germany.Search in Google Scholar

ASTM F 1980 (2021). Guideline - Standard guide for accelerated aging of sterile barrier systems and medical devices. In: Book of Standards Volume: 15.10. [Online]. America Society for Testing and Materials (ASTM). https://doi.org/10.1520/F1980-07R11.Search in Google Scholar

Brodzik, K., Faber, J., Łomankiewicz, D., and Gołda-Kopek, A. (2014). In-vehicle VOCs composition of unconditioned, newly produced cars. J. Environ. Sci. 26: 1052–1061, https://doi.org/10.1016/S1001-0742(13)60459-3.Search in Google Scholar PubMed

Delli, E., Giliopoulos, D., Bikiaris, D.N., and Chrissafis, K. (2021). Fibre length and loading impact on the properties of glass fibre reinforced polypropylene random composites. Compos. Struct. 263: 113678, https://doi.org/10.1016/j.compstruct.2021.113678.Search in Google Scholar

Fang, J., Zhang, L., and Li, C. (2020). The combined effect of impregnated rollers configuration and glass fibers surface modification on the properties of continuous glass fibers reinforced polypropylene prepreg composites. Compos. Sci. Tech. 197: 108259, https://doi.org/10.1016/j.compscitech.2020.108259.Search in Google Scholar

Hariprasad, K., Ravichandran, K., Jayaseelan, V., and Muthuramalingam, T. (2020). Acoustic and mechanical characterisation of polypropylene composites reinforced by natural fibres for automotive applications. Jour. Mat. Res. Tech. 9: 14029–14035, https://doi.org/10.1016/j.jmrt.2020.09.112.Search in Google Scholar

Hellerich, Harsch, G., and Baur, E. (2010). Werkstoff-Führer Kunststoffe: Eigenschaften-Prüfungen-Kennwerte, 10th ed. Carl Hanser Verlag, München, Germany.10.3139/9783446425729Search in Google Scholar

Holtkamp, D. (2016). Emissions and odour in passenger car interiors. Global harmonization efforts on test methods, exposure scenarios and limit values. In: TPE Magazine international. Dr. Gupta Verlag, Ratingen, Germany, pp. 34–39.Search in Google Scholar

Hopfer, H., Haar, N., Stockreiter, W., Sauer, C., and Leitner, E. (2012). Combining different analytical approaches to identify odor formation mechanisms in poly-ethylene and polypropylene. Anal. Bioanal. Chem. 402: 903–919, https://doi.org/10.1007/s00216-011-5463-8.Search in Google Scholar PubMed

Jamririchova, Z. and Akova, E. (2013). Mechanical testing of natural fiber composites for automotive industry. Univ. Rev. 7: 20–25.Search in Google Scholar

Kalinka, G. (1995). Ein Beitrag zur Kristallisation gefüllter und ungefüllter Thermoplaste. In: BAM Bundesanstalt für Materialforschung und Prüfung, Vol. 208. Forschungsbericht, Berlin, Germany.Search in Google Scholar

Krebs, C. and Avondet, M.A. (1999). Langzeitverhalten von Thermoplasten-Alterungsverhalten und Chemikalienbeständigkeit. Carl Hanser Verlag, Munich, Vienna.Search in Google Scholar

Langer, B., Bierögel, C., and Grellmann, W. (2008). Eigenschaften von Polypropylenen gezielt bewerten. Kunststoffe 5: 87–93.Search in Google Scholar

Law, A., Simon, L., and Sullivan, P.L. (2008). Effects of thermal aging on isotactic polypropylene crystallinity. Polym. Eng. Sci. 48: 627–633, https://doi.org/10.1002/pen.20987.Search in Google Scholar

Moll, S. (2017). Untersuchung der Auswirkungen einer thermisch-oxidativen Beanspruchung auf das Emissionsverhalten von ABS und PP und der Korrelation mit dem Alterungsgrad, PhD Thesis. Germany, Technische Fakultät der Friedrich-Alexander-Universität Universität Erlangen Nürnberg, Germany.Search in Google Scholar

Moneke, M. (2001). Die Kristallisation von verstärkten Thermoplasten während der schnellen Abkühlung und unter Druck, PhD Thesis. Germany, Fachbereich Material- und Geowissenschaften der Technischen Universität Darmstadt, Germany.Search in Google Scholar

Nuruzzaman, D.M., Kusaseh, N.M., Ismail, N.M., Asif Iqbal, A.K.M., Rahman, M.M., and Azhari, A. (2020). Influence of glass fiber content on tensile properties of polyamidepolypropylene based polymer blend composites. Mat. Today Proc. 29: 133–137, https://doi.org/10.1016/j.matpr.2020.05.643.Search in Google Scholar

Oliani, W.L., Fermino, D.M., Carvalho, L.F., de Lima, P., Lugao, A.B., and Parra, D.F. (2016). Effect of accelerated thermal aging on polypropylene modified by irradiation process. In: Characterization of minarals, metals, and materials 2015. Springer International Publishers, Switzerland, pp. 651–658.10.1002/9781119093404.ch82Search in Google Scholar

Parenteau, T., Ausias, G., Grohens, Y., and Pilvin, P. (2012). Structure, mechanical properties and modelling of polypropylene for different degrees of crystallinity. Polymer 53: 5873–5884, https://doi.org/10.1016/j.polymer.2012.09.053.Search in Google Scholar

Pongratz, S. (2000). Alterung von Kunststoffen während der Verarbeitung und im Gebrauch, PhD Thesis. Germany, Lehrstuhl für Kunststofftechnik, Technische Fakultät der Universität Erlangen-Nürnberg, Germany.Search in Google Scholar

Reingruber, E., Reussnerb, J., Sauer, C., Standler, A., and Buchberger, W. (2011). Studies on the emission behavior of polypropylene by gas chromatography/mass spectrometry with static headspace or thermodesorption. J. Chromatogr. A 1218: 3326–3331, https://doi.org/10.1016/j.chroma.2010.11.021.Search in Google Scholar PubMed

Ryu, S.H., Gogos, C.G., and Xanthos, M. (1991/1992). Parameters affecting process effenciency of peroxide-initiated controlled degradation of polypropylen. Adv. Polym. Technol. 11: 121–131, https://doi.org/10.1002/adv.1991.060110205.Search in Google Scholar

Schnabel, W. (1981). Polymer degradation: principles and practical applications. Hanser International, Berlin.Search in Google Scholar

Van der Wal, A., Mulder, J.J., and Gaymans, R.J. (1998). Fracture of Polypropylene: the effect of crystallinity. Polymer 39: 5477–5481, https://doi.org/10.1016/s0032-3861(97)10279-8.Search in Google Scholar

VDA 278 (2011). Guideline - Thermal desorption analysis of organic emissions for the characterization of non-metallic materials for automobiles. Verband der Automobilindustrie e.V., Berlin, Germany.Search in Google Scholar

Wafai, H., Lubineau, G., Yudhanto, A., Mulle, M., Schijve, W., and Verghese, N. (2016). Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP). Compos. A -  Appl. Sci. Manuf. 91: 41–52, https://doi.org/10.1016/j.compositesa.2016.09.014.Search in Google Scholar

Wie, L., Donald, A., Freitag, C., and Morell, J.J. (2013). Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polym. Degrad. Stab. 98: 1348–1361, https://doi.org/10.1016/j.polymdegradstab.2013.03.027.Search in Google Scholar

Willoughby, B.G., Golby, A., Davies, J., and Cain, R. (2003). Volatile component analysis as a routine characterization tool: an approach to fingerprinting polyolefin type and process history using ATD-GC/MS. Polym. Test. 22: 553–570, https://doi.org/10.1016/s0142-9418(02)00152-6.Search in Google Scholar

Witek, W., Madlener, R., and Schwager, H. (2004). Emissions and odour of natural fiber composites in automotive-legal requirements-mesasuring methods-results. In: 5th global Wood and natural fiber composites symposium. Kassel, Germany.Search in Google Scholar

Xiang, Q., Xanthos, M., Mitra, S., Patel, S.H., and Guo, J. (2002). Effects of melt reprocessing on volatile emissions and structural/rheological changes of unstabilized polypropylene. Polym. Degrad. Stab. 77: 93–102, https://doi.org/10.1016/s0141-3910(02)00083-6.Search in Google Scholar

Xu, K., Feng, J., Zhong, T., Zheng, Z., and Chen, T. (2015). Effects of volatile chemical components of wood species on mould growth susceptibility and termite attack resistance of wood plastic composites. Int. Biodeterior. Biodegrad. 100: 106–115, https://doi.org/10.1016/j.ibiod.2015.02.002.Search in Google Scholar

Received: 2022-08-17
Accepted: 2022-11-03
Published Online: 2022-12-05
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ipp-2022-4268/pdf
Scroll to top button