Abstract
In this work, top surface lubrication during friction stir welding of polycarbonate sheets was applied. A homogenous layer of Paraffin wax has been placed on the top surface of the joint area with a width that ensures to cover the shoulder diameter. Then FSW was applied using conventional FSW tool with rotating pin and shoulder at different FSW parameters (Rotation speeds of 1 000, 1500, 2 000 min–1 and welding speeds of 25, 50, 75,100 mm/min). The main objective of using the wax is to act as a lubricant that reduces the friction between the shoulder and the polycarbonate surface. The joints produced were investigated in terms of surface quality, internal defects, and mechanical properties. During FSW the wax is melted and played as lubricant between the tool shoulder and the polycarbonate surface and resulted in defect-free surface with no thickness reduction of the original plate. The transverse cross-section showed defect-free joints for the majority of the FSW parameters investigated. Tensile testing results showed a reduction of the tensile strength after FSW, and an enhancement in the tensile strength with the increase of welding speed or rotation speed. The fracture occurs at the joint zone and the fracture surface investigation using SEM showed the existence of spherulitic structure in the weld joint.
References
Aghajani, H., Simchi, A., “Experimental and Thermomechanical Analysis of the Effect of Tool Pin Profile on the Friction Stir Welding of Poly(methyl methacrylate) Sheets”, J. Manuf. Process., 34, 412–23 (2018), DOI:10.1016/j.jmapro.2018.06.01510.1016/j.jmapro.2018.06.015Search in Google Scholar
Ahmed, M. M. Z., El-Sayed Seleman, M. M., Shazly, M., Attallah, M. M. and Ahmed, E., “Microstructural Development and Mechanical Properties of Friction Stir Welded Ferritic Stainless Steel AISI 409“, J. Mater. Eng. Perform., 28, 6391–6406 (2019), DOI:10.1007/s11665-019-04365-910.1007/s11665-019-04365-9Search in Google Scholar
Ahmed, M. M. Z., Wynne, B. P. and Martin, J. P., “Effect of Friction Stir Welding Speed on Mechanical Properties and Microstructure of Nickel Based Super Alloy Inconel 718“, Sci. Technol. Weld. Join., 18, 680–87 (2013), DOI:10.1179/1362171813Y.000000015610.1179/1362171813Y.0000000156Search in Google Scholar
Ahmed, M. M. Z., Ataya, S., El-Sayed Seleman, M. M., Ammar, H. R. and Ahmed, E., “Friction Stir Welding of Similar and Dissimilar AA7075 and AA5083“, J. Mater. Proc. Tech., 242, 77–91 (2017), DOI:10.1016/j.jmatprotec.2016.11.02410.1016/j.jmatprotec.2016.11.024Search in Google Scholar
Ahmed, M. M. Z., Wynne, B. P., Rainforth, W. M., Addison, A., Martin, J. P. and Threadgill, P. L., “Effect of Tool Geometry and Heat Input on the Hardness, Grain Structure, and Crystallographic Texture of Thick-Section Friction Stir-Welded Aluminium”, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 50, 271–284 (2019), DOI:10.1007/s11661-018-4996-210.1007/s11661-018-4996-2Search in Google Scholar
Ahmed, M. M. Z., Wynne, B. P., El-Sayed Seleman, M. M. and Rain-forth, W. M., “A Comparison of Crystallographic Texture and Grain Structure Development in Aluminum Generated by Friction Stir Welding and High Strain Torsion”, Mater. Des., 103, 259–267 (2016), DOI:10.1016/j.matdes.2016.04.05610.1016/j.matdes.2016.04.056Search in Google Scholar
Chen, Y. C., Nakata, K., “Microstructural Characterization and Mechanical Properties in Friction Stir Welding of Aluminum and Titanium Dissimilar Alloys”, Mater. Des., 30, 469–74 (2009), DOI:10.1016/j.matdes.2008.06.00810.1016/j.matdes.2008.06.008Search in Google Scholar
Commin, L., Dumont, M., Masse, J.-E. and Barrallier, L., “Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters”, Acta Mater., 57, 326–34 (2009), DOI:10.1016/j.actamat.2008.09.01110.1016/j.actamat.2008.09.011Search in Google Scholar
Eslami, S., Ramos, T., Tavares, P. J. and Moreira, P. M. G. P., “Effect of Friction Stir Welding Parameters with Newly Developed Tool for Lap Joint of Dissimilar Polymers”, Procedia Eng., 114, 199–207 (2015), DOI:10.1016/j.proeng.2015.08.05910.1016/j.proeng.2015.08.059Search in Google Scholar
Essa, A. R. S., Ahmed, M. M. Z., Mohamed, A. Y. A. and El-Nikhaily, A. E., “An Analytical Model of Heat Generation for Eccentric Cylindrical Pin in Friction Stir Welding”, J. Mater. Res. Tech., 5, 234–240 (2016), DOI:10.1016/j.jmrt.2015.11.00910.1016/j.jmrt.2015.11.009Search in Google Scholar
Fujii, H., Sun, Y., Kato, H. and Nakata, K., “Investigation of Welding Parameter Dependent Microstructure and Mechanical Properties in Friction Stir Welded Pure Ti Joints”, Mater. Sci. Eng., A, 527, 3386–91(2010), DOI:10.1016/j.msea.2010.02.02310.1016/j.msea.2010.02.023Search in Google Scholar
Gao, J., Shen, Y. and Xu, H., “Investigations for the Mechanical, Macro-, and Microstructural Analyses of Dissimilar Submerged Friction Stir Welding of Acrylonitrile Butadiene Styrene and Polycarbonate Sheets”, Proc. Inst. Mech. Eng. B J. Eng. Manuf., 230, 1213–20 (2015), DOI:10.1177/095440541557266310.1177/0954405415572663Search in Google Scholar
Hamada, A. S., Järvenpää, A., Ahmed, M. M. Z., Jaskari, M., Wynne, B. P., Porter, D. A. and Karjalainen, L. P., “The Microstructural Evolution of Friction Stir Welded AA6082-T6 Aluminum Alloy during Cyclic Deformation”, Mater. Sci. Eng., A, 642, 366–376 (2015), DOI:10.1016/j.msea.2015.06.10010.1016/j.msea.2015.06.100Search in Google Scholar
Hsu, H. H., Hwang, Y. M., “A Study on Friction Stir Process of Magnesium Alloy AZ31 Sheet”, K. Eng. Mater., 340–341 II, 1449–1454 (2007), DOI:10.4028/www.scientific.net/kem.340-341.144910.4028/www.scientific.net/kem.340-341.1449Search in Google Scholar
Jaiganesh, V. B. M., Gopinath, E., “Optimization of Process Parameters on Friction Stir Welding of High Density Polypropylene Plate”, Procedia Eng. , 97, 1957–1965 (2014), DOI:10.1016/j.proeng.2014.12.35010.1016/j.proeng.2014.12.350Search in Google Scholar
Khodir, S. A., Ahmed, M. M. Z., Ahmed, E., Mohamed, S. M. R. and Abdel-Aleem, H., “Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints”, J. Mater. Eng. Perform., 25, 4637–4648 (2016), DOI:10.1007/s11665-016-2314-y10.1007/s11665-016-2314-ySearch in Google Scholar
Kiss, Z., Czigány, T., “Applicability of Friction Stir Welding in Polymeric Materials”, Period. Polytech., 1, 15–18 (2007), DOI:10.3311/pp.me.2007-1.0210.3311/pp.me.2007-1.02Search in Google Scholar
Lambiase, F., Paoletti, A. and Di Ilio, A. “Mechanical Behaviour of Friction Stir Spot Welds of Polycarbonate Sheets”, Int. J. Adv. Manuf. Technol., 80, 301–314 (2015), DOI:10.1007/s00170-015-7007-410.1007/s00170-015-7007-4Search in Google Scholar
Mehta, K. P., Badheka, V. J., “Influence of Tool Pin Design on Properties of Dissimilar Copper to Aluminum Friction Stir Welding”, Trans. Nonf. Met. Soc. Ch., 27, 36–54 (2017), DOI:10.1016/S1003-6326(17)60005-010.1016/S1003-6326(17)60005-0Search in Google Scholar
Mendes, N., Loureiro, A., Martins, C., Neto, P. and Pires, J. N., “Effect of Friction Stir Welding Parameters on Morphology and Strength of Acrylonitrile Butadiene Styrene Plate Welds”, Mater. Des., 58, 457–464 (2014), DOI:10.1016/j.matdes.2014.02.03610.1016/j.matdes.2014.02.036Search in Google Scholar
Paoletti, A., Lambiase, F. and Ilio, A. D., “Optimization of Friction Stir Welding of Thermoplastics”, Procedia CIRP, 33, 562–67 (2015), DOI:10.1016/j.procir.2015.06.07810.1016/j.procir.2015.06.078Search in Google Scholar
Pirizadeh, M., Azdast, T., Ahmadi, S. R., Shishavan, S. M. and Bagheri, A., “Friction Stir Welding of Thermoplastics Using a Newly Designed Tool”, Mater. Des., 54, 342–347 (2014), DOI:10.1016/j.matdes.2013.08.05310.1016/j.matdes.2013.08.053Search in Google Scholar
Refat, M., Elashery, A., Toschi, S., Ahmed, M. M. Z., Morri, A., El-Mahallawi, I. and Ceschini, L., “Microstructure, Hardness and Impact Toughness of Heat-Treated Nanodispersed Surface and Friction Stir-Processed Aluminum Alloy AA7075“, J. Mater. Eng. Perform., 25, 5087–5101 (2016), DOI:10.1007/s11665-016-2346-310.1007/s11665-016-2346-3Search in Google Scholar
Rezaee, M., Farahani, M., Amir, S. and Alavi, D., “Investigation on the Effects of Tool Geometry on the Microstructure and the Mechanical Properties of Dissimilar Friction Stir Welded Polyethylene and Polypropylene Sheets”, J. Manuf. Process., 26, 269–79 (2017), DOI:10.1016/j.jmapro.2017.02.01810.1016/j.jmapro.2017.02.018Search in Google Scholar
Shahi, P., Barmouz, M., “Chapter 11 Force and Torque in Friction Stir Welding, in Advances in Friction Stir Welding and Processing, 1st Edition, Woodhead, Elsevier, Cambridge (2014), DOI:10.1533/9780857094551.45910.1533/9780857094551.459Search in Google Scholar
Shazly, M., Ahmed, M. M. Z. and El-Raey, M., “Chapter 11 Friction Stir Welding of Polycarbonate Sheets”, in Characterization of Minerals, Metals, and Materials, Carpenter, J. S., Bai, C., Hwang, J.-Y., Ikhmayies, S., Li, B., Monteiro, S. N., Peng, Z. and Zhang, M. (Eds), John Wiley & Sons, Hoboken, New Jersey (2014), DOI:10.1002/9781118888056.ch6510.1002/9781118888056.ch65Search in Google Scholar
Song, K. H., Nakata, K., “Effect of Precipitation on Post-Heat-Treated Inconel 625 Alloy after Friction Stir Welding”, Mater. Des., 31, 2942–2947(2010), DOI:10.1016/j.matdes.2009.12.02010.1016/j.matdes.2009.12.020Search in Google Scholar
Strand, S., “Joining Plastics – Can Friction Stir Welding Compete?“, Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Technology Conference (Cat. No. 03CH37480), 321–326 (2003), DOI:10.1109/EICEMC.2003.124790410.1109/EICEMC.2003.1247904Search in Google Scholar
Thomas, W. M., “Friction Stir Welding of Ferrous Materials; A Feasibility Study." Sci. Technol. Weld. Join., 4, 1–11 (1999), DOI:10.1179/13621719910153801210.1179/136217199101538012Search in Google Scholar
Threadgill, P. L., “Terminology in Friction Stir Welding”, Sci. Technol. Weld. Join., 12, 357–360 (2007), DOI:10.1179/174329307X19762910.1179/174329307X197629Search in Google Scholar
Threadgill, P. L., Leonard, A. J., Shercliff, H. R. and Withers, P. J., “Friction Stir Welding of Aluminium Alloys”, 54, 49–93 (2009), DOI:10.1179/174328009X41113610.1179/174328009X411136Search in Google Scholar
Tonelli, L., Morri, A., Toschi, S., Shaaban, M., Ammar, H. R., Ahmed, M. M. Z. and Ramadan, R. M., “Effect of FSP Parameters and Tool Geometry on Microstructure, Hardness, and Wear Properties of AA7075 with and without Reinforcing B4C Ceramic Particles”, Int. J. Adv. Manuf. Technol., 102, 3945–3961 (2019), DOI:10.1007/s00170-019-03442-610.1007/s00170-019-03442-6Search in Google Scholar
Utracki, L. A.: Polymer Blends Handbook, 2nd Edition, Springer, Dordrecht, The Netherlands (2014), DOI:10.1007/978-94-007-6064-610.1007/978-94-007-6064-6Search in Google Scholar
Yousefpour, A., Hojjati, M. and Immarigeon, J., “Fusion Bonding/ Welding of Thermoplastic Composites”, J. Therm. Comp. Mater., 17, 303–341(2004), DOI:10.1177/089270570404518710.1177/0892705704045187Search in Google Scholar
Zhou, L., Liu, H. J. and Liu, Q. W., “Effect of Rotation Speed on Microstructure and Mechanical Properties of Ti–6Al–4 V Friction Stir Welded Joints”, Mater. Des., 31, 2631–2636 (2010), DOI:10.1016/j.matdes.2009.12.01410.1016/j.matdes.2009.12.014Search in Google Scholar
Acknowledgements
The authors acknowledge the financial support rendered by the Science and Technology Development fund (STDF), Egyptian State Ministry of Higher Education and Scientific Research (Project IDs: 3926 and 5304).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Regular Contributed Articles
- Effects of Expanded Graphite, Aluminum Hydroxide, and Kaolin on Flame Retardancy and Smoke Suppression of Polyurethane Composites
- Numerical Simulation of Tensile Residual Stresses in SWCNT-Reinforced Polymer Composites
- Thermo-Responsive Shape Memory Behavior of Methyl Vinyl Silicone Rubber/Olefin Block Copolymer Blends via Co-Crosslinking
- Enhanced Infrared Heating of Thermoplastic Composite Sheets for Thermoforming Processes
- Effect of Graphene, SiO2 and Zeolite Powder on the Mechanical and Scratch Properties of PP
- Mechanical, Interfacial and Thermal Properties of Silica Aerogel-Infused Flax/Epoxy Composites
- The Effect of Silica Nanofiller on the Physical and Thermal Characteristics of Rubber-Based Composites
- Accurate Simulation of the Four Modes of Post-Die Extrudate Shape Distortion
- Effects of Hydrothermal Seawater Aging on the Mechanical Properties and Water Absorption of Glass/Aramid/Epoxy Hybrid Composites
- The Effect of Top Surface Lubrication on the Friction Stir Welding of Polycarbonate Sheets
- Influence of Solid TAIC on Crosslinking LLDPE by Electron Beam Radiation
- PPS News
- Seikei-kakou abstracts
Articles in the same Issue
- Frontmatter
- Editorial
- Regular Contributed Articles
- Effects of Expanded Graphite, Aluminum Hydroxide, and Kaolin on Flame Retardancy and Smoke Suppression of Polyurethane Composites
- Numerical Simulation of Tensile Residual Stresses in SWCNT-Reinforced Polymer Composites
- Thermo-Responsive Shape Memory Behavior of Methyl Vinyl Silicone Rubber/Olefin Block Copolymer Blends via Co-Crosslinking
- Enhanced Infrared Heating of Thermoplastic Composite Sheets for Thermoforming Processes
- Effect of Graphene, SiO2 and Zeolite Powder on the Mechanical and Scratch Properties of PP
- Mechanical, Interfacial and Thermal Properties of Silica Aerogel-Infused Flax/Epoxy Composites
- The Effect of Silica Nanofiller on the Physical and Thermal Characteristics of Rubber-Based Composites
- Accurate Simulation of the Four Modes of Post-Die Extrudate Shape Distortion
- Effects of Hydrothermal Seawater Aging on the Mechanical Properties and Water Absorption of Glass/Aramid/Epoxy Hybrid Composites
- The Effect of Top Surface Lubrication on the Friction Stir Welding of Polycarbonate Sheets
- Influence of Solid TAIC on Crosslinking LLDPE by Electron Beam Radiation
- PPS News
- Seikei-kakou abstracts