Abstract
Scratch resistant surface of polypropylene (PP) is of critical importance for automobile, household appliances and other industries. In this paper, the mechanical and scratch properties of PP were studied by incorporation of three types of inorganic particles, including graphene (GP), silicon dioxide (SiO2) and zeolite powder (ZP), respectively. Maleic anhydride grafted polypropylene was used as compatibilizer. The effects of inorganic particle content on crystallization, mechanical properties and scratch resistance of PP composites were studied. Results showed that adding inorganic fillers led to enhanced crystallinity of PP, thus improving the scratch resistance of PP materials. Compared with PP/SiO2 and PP/ ZP, PP/GP exhibited the best scratch resistance and low sensitivity to scratch deformation at 2 wt% filler. We believe that the scratch resistance of PP was determined by material characteristics and crystallinity. This will be a reference for the research on the scratch resistance of other polymer materials.
Acknowledgements
The authors gratefully acknowledge the Science and Technology Support Program of GuiZhou Province (BaiYun [2019] 18).
References
Cartledge, H. C. Y., Baillie, C. and Mai, Y.-W., “Friction and Wear Mechanisms of a Thermoplastic Composite GF/PA6 Subjected to Different Thermal Histories”, Wear, 194, 178–184 (1996), DOI:10.1016/0043-1648(95)06839-210.1016/0043-1648(95)06839-2Search in Google Scholar
Cheng, Q., Jiang, C.-K., Zhang, J.-W., Yang, Z.-R., Zhu, Z.-M. and Jiang, H., “Effect of Thermal Aging on the Scratch Behavior of Poly(methyl methacrylate)“, Tribol. Int., 101, 110–114 (2016), DOI:10.1016/j.triboint.2016.04.01310.1016/j.triboint.2016.04.013Search in Google Scholar
Dasari, A., Rohrmann, J. and Misra, R. D. K., “Microstructural Evolution during Tensile Deformation of Polypropylenes”, Mater. Sci. Eng., A, 35, 200–213 (2003), DOI:10.1016/S0921-5093(02)00854-710.1016/S0921-5093(02)00854-7Search in Google Scholar
Dasari, A., Rohrmann, J. and Misra, R. D. K., “On the Scratch Deformation of Micrometric Wollastonite Reinforced Polypropylene Composites”, Mater. Sci. Eng., A, 364, 357–369 (2004), DOI:10.1016/j.msea.2003.08.05810.1016/j.msea.2003.08.058Search in Google Scholar
Friedrich, K., Sue, H.-J., Liu, P. and Almajid, A. A, “Scratch Resistance of High Performance Polymers”, Tribol. Int., 44, 1032–1046 (2011), DOI:10.1016/j.triboint.2011.04.00810.1016/j.triboint.2011.04.008Search in Google Scholar
Feng, L.-Q., Benhamida, B., Lu, C.-Y., Sung, L.-P., Morel, P. and Detwiler, A. T., “Fundamentals and Characterizations of Scratch Resistance on Automotive Clearcoats”, Prog. Org. Coat., 125, 339–347 (2018), DOI:10.1016/j.porgcoat.2018.09.01110.1016/j.porgcoat.2018.09.011Search in Google Scholar
Gao, W.-M., Wang, L., Coffey, J. K. and Daver, F., “Understanding the Scratch Behaviour of Polymeric Materials with Surface Texture”, Mater. Des., 146, 38–48 (2018), DOI:10.1016/j.matdes.2018.02.07410.1016/j.matdes.2018.02.074Search in Google Scholar
Hadal, R. S., Dasari, R., Rohrmann, J. and Misra, R. D. K., “Susceptibility to Scratch Surface Damage of Wollastonite- and Talc-Containing Polypropylene Micrometric Composites”, Mater. Sci. Eng., A, 380, 326–339 (2004), DOI:10.1016/j.msea.2004.03.05810.1016/j.msea.2004.03.058Search in Google Scholar
Hadal, R. S., Misra, R. D. K., “Scratch Deformation Behavior of Thermoplastic Materials with Significant Differences in Ductility”, Mater. Sci. Eng., A, 398 (1–2), 252–261 (2005), DOI:10.1016/j.msea.2005.03.02810.1016/j.msea.2005.03.028Search in Google Scholar
Hossain, M. M., Moghbelli, E., Jahnke, E., Boeckmann, P., Guriyanova, S., Sander, S., Minkwitz, R. and Sue, H.-J., “Rubber Particle Size and Type Effects on Scratch Behavior of Styrenic-Based Copolymers”, Polymer, 63, 71–81 (2015), DOI:10.1016/j.polymer.2015.02.04510.1016/j.polymer.2015.02.045Search in Google Scholar
Hamdi, M., Zhang, X.-F. and Sue, H.-J., “Fundamental Understanding on Scratch Behavior of Polymeric Laminates”, Wear, 380–381, 203–216 (2017), DOI:10.1016/j.wear.2017.03.02410.1016/j.wear.2017.03.024Search in Google Scholar
Jiang, H., Browning. R. and Sue, H.-J., “Understanding of Scratch-Induced Damage Mechanisms in Polymers”, Polymer, 50, 4056–4065 (2009), DOI:10.1016/j.polymer.2009.06.06110.1016/j.polymer.2009.06.061Search in Google Scholar
Jiang, H., Cheng, Q, Jiang, C.-K., Zhang, J.-W. and Li, Y.-H., “Effect of Stick-Slip on the Scratch Performance of Polypropylene”, Tribol. Int., 91, 1–5 (2015), DOI:10.1016/j.triboint.2015.06.02410.1016/j.triboint.2015.06.024Search in Google Scholar
Jiang, H., Zhang, J.-W., Yang Z.-R., Jiang, C.-K. and Kang, G.-Z., “Modeling of Competition between Shear Yielding and Crazing in Amorphous Polymers Scratch”, Int. J. Solids Struct., 124, 215–228 (2017), DOI:10.1016/j.ijsolstr.2017.06.03310.1016/j.ijsolstr.2017.06.033Search in Google Scholar
Kaymakci, A., Birinci, E. and Ayrilmis, N., “Surface Characteristics of Wood Polypropylene Nanocomposites Reinforced with Multi-Walled Carbon Nanotubes”, Composites Part B, 157, 43–46 (2019), DOI:10.1016/j.compositesb.2018.08.09910.1016/j.compositesb.2018.08.099Search in Google Scholar
Li, L.-L., Qin, L.-L., Liu, J.-W., Zhang, C., Sha, Jiang, J., Wang, X.-L., Chen, W., Xue, J. and Zhou, D.-S., “Crystallization Kinetics of Syndiotactic Polypropylene Confined in Nanoporous Alumina”, Polymer, 110, 273–283 (2017), DOI:10.1016/j.polymer.2016.12.08110.1016/j.polymer.2016.12.081Search in Google Scholar
Misra, R. D. K., Hadal, R. and Duncan, S. J., “Surface Damage Behavior during Scratch Deformation of Mineral Reinforced Polymer Composites”, Acta Mat., 52 (14): 4363–4376 (2004), DOI:10.1016/j.actamat.2004.06.00310.1016/j.actamat.2004.06.003Search in Google Scholar
Moghbelli, E., Browning, R. L. Boo, W.-J., Hahn, S. F., Feick, L. J. E. and Sue, H.-J., “Effects of Molecular Weight and Thermal History on Scratch Behavior of Polypropylene Thin Sheets”, Tribol. Int., 41(5), 425–433(2008), DOI:10.1016/j.triboint.2007.09.00810.1016/j.triboint.2007.09.008Search in Google Scholar
Moghbelli, E., Banyay, R. and Sue, H.-J., “Effect of Moisture Exposure on Scratch Resistance of PMMA“, Tribol. Int., 69, 46–51 (2014), DOI:10.1016/j.triboint.2013.08.01210.1016/j.triboint.2013.08.012Search in Google Scholar
Mazur, M., Wojcieszak, D., Kaczmarek, D., Domaradzki, J., Song, S., Gibson, D., Placido, F., Mazur, P., Kalisz, M. and Poniedzialek, A., “Functional Photocatalytically Active and Scratch Resistant Antireflective Coating Based on TiO2 and SiO2" Appl. Surf. Sci., 380, 165–171(2016), DOI:10.1016/j.apsusc.2016.01.22610.1016/j.apsusc.2016.01.226Search in Google Scholar
Motamedi, P., Bagheri, R., “Study of the Scratch Resistance Criteria and their Relationship with Mechanical Properties and Microstructure in a Ternary Thermoplastic Blend”, Wear, 386–387, 118–128 (2017), DOI:10.1016/j.wear.2017.06.00810.1016/j.wear.2017.06.008Search in Google Scholar
Shin, K.-Y., Hong, J.-Y., Lee, S. and Jang, J., “Evaluation of Anti-Scratch Properties of Graphene Oxide/Polypropylene Nanocomposites”, J. Mater. Chem., 22, 7871–7879 (2012), DOI:10.1039/c2jm15569a10.1039/c2jm15569aSearch in Google Scholar
Tana, F., Messori, M., Contini, D., Cigada, A., Valente, T., Variola, F., Nardo, L. D. and Bondioli, F., “Synthesis and Characterization of Scratch-Resistant Hybrid Coatings Based on Non-Hydrolytic Sol-Gel ZrO2 Nanoparticles”, Prog. Org. Coat., 103, 60–68 (2017), DOI:10.1016/j.porgcoat.2016.11.02210.1016/j.porgcoat.2016.11.022Search in Google Scholar
Wong, M, Lim, G. T., Moyse, A, Reddy, J. N. and Sue, H.-J., “A New Test Methodology for Evaluating Scratch Resistance of Polymers”, Wear, 256, 1214–1227 (2004), DOI:10.1016/j.wear.2003.10.02710.1016/j.wear.2003.10.027Search in Google Scholar
Wang, W., Zhang, W., Chen, H., Zhang, S.-F. and Li, J.-Z., “Synergistic Effect of Synthetic Zeolites on Flame-Retardant Wood-Flour/ Polypropylene Composites”, Constr. Build. Mater., 79, 337–344 (2015), DOI:10.1016/j.conbuildmat.2015.01.03810.1016/j.conbuildmat.2015.01.038Search in Google Scholar
Xu, Y., Li, D., Shen, J.-B., Guo, S.-Y. and Sue, H.-J., “Scratch Damage Behaviors of PVDF/PMMA Multilayered Materials: Experiments and Finite Element Modeling”, Polymer, 182, 1–13 (2019), DOI:10.1016/j.polymer.2019.12182910.1016/j.polymer.2019.121829Search in Google Scholar
Zhang, S. L., Li, J. C. M., “Slip Process of Stick Slip Motion in the Scratching of a Polymer”, Mater. Sci. Eng., A, 344, 182–189 (2003), DOI:10.1016/S0921-5093(02)00409-410.1016/S0921-5093(02)00409-4Search in Google Scholar
Zokaei, S., Lesan Khosh, M. R. and Bagheri, R., “Study of Scratch Resistance in Homo- and Co-Polypropylene Filled with Nanometric Calcium Carbonate”, Mater. Sci. Eng., A, 445–446, 526–536 (2007), DOI:10.1016/j.msea.2006.09.08010.1016/j.msea.2006.09.080Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Regular Contributed Articles
- Effects of Expanded Graphite, Aluminum Hydroxide, and Kaolin on Flame Retardancy and Smoke Suppression of Polyurethane Composites
- Numerical Simulation of Tensile Residual Stresses in SWCNT-Reinforced Polymer Composites
- Thermo-Responsive Shape Memory Behavior of Methyl Vinyl Silicone Rubber/Olefin Block Copolymer Blends via Co-Crosslinking
- Enhanced Infrared Heating of Thermoplastic Composite Sheets for Thermoforming Processes
- Effect of Graphene, SiO2 and Zeolite Powder on the Mechanical and Scratch Properties of PP
- Mechanical, Interfacial and Thermal Properties of Silica Aerogel-Infused Flax/Epoxy Composites
- The Effect of Silica Nanofiller on the Physical and Thermal Characteristics of Rubber-Based Composites
- Accurate Simulation of the Four Modes of Post-Die Extrudate Shape Distortion
- Effects of Hydrothermal Seawater Aging on the Mechanical Properties and Water Absorption of Glass/Aramid/Epoxy Hybrid Composites
- The Effect of Top Surface Lubrication on the Friction Stir Welding of Polycarbonate Sheets
- Influence of Solid TAIC on Crosslinking LLDPE by Electron Beam Radiation
- PPS News
- Seikei-kakou abstracts
Articles in the same Issue
- Frontmatter
- Editorial
- Regular Contributed Articles
- Effects of Expanded Graphite, Aluminum Hydroxide, and Kaolin on Flame Retardancy and Smoke Suppression of Polyurethane Composites
- Numerical Simulation of Tensile Residual Stresses in SWCNT-Reinforced Polymer Composites
- Thermo-Responsive Shape Memory Behavior of Methyl Vinyl Silicone Rubber/Olefin Block Copolymer Blends via Co-Crosslinking
- Enhanced Infrared Heating of Thermoplastic Composite Sheets for Thermoforming Processes
- Effect of Graphene, SiO2 and Zeolite Powder on the Mechanical and Scratch Properties of PP
- Mechanical, Interfacial and Thermal Properties of Silica Aerogel-Infused Flax/Epoxy Composites
- The Effect of Silica Nanofiller on the Physical and Thermal Characteristics of Rubber-Based Composites
- Accurate Simulation of the Four Modes of Post-Die Extrudate Shape Distortion
- Effects of Hydrothermal Seawater Aging on the Mechanical Properties and Water Absorption of Glass/Aramid/Epoxy Hybrid Composites
- The Effect of Top Surface Lubrication on the Friction Stir Welding of Polycarbonate Sheets
- Influence of Solid TAIC on Crosslinking LLDPE by Electron Beam Radiation
- PPS News
- Seikei-kakou abstracts