Startseite The 392 Problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The 392 Problem

  • Aaron Meyerowitz EMAIL logo und John Selfridge
Veröffentlicht/Copyright: 30. November 2012
Veröffentlichen auch Sie bei De Gruyter Brill
Integers
Aus der Zeitschrift Integers Band 12 Heft 6

Abstract.

Suppose that a is a positive non-square integer and we wish to multiply a subset of to form a square so that a is used and we minimize the largest number used. Now add the requirement that we must use at most f factors in forming the square. Erdős, Malouf, Selfridge, and Szekeres conjectured that if , then using factors results in a smaller maximum than using factors. Their paper on this subject reduces the conjecture to the case that a is a term in a certain sequence , where grows almost as fast as . We give theoretical and computational results which establish the result for and for several infinite classes that comprise a positive proportion of the subscripts N.

Received: 2011-07-01
Revised: 2011-11-02
Accepted: 2012-01-19
Published Online: 2012-11-30
Published in Print: 2012-12-01

© 2012 by Walter de Gruyter Berlin Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/integers-2012-0042/html
Button zum nach oben scrollen