Startseite Primitive Prime Divisors in Zero Orbits of Polynomials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Primitive Prime Divisors in Zero Orbits of Polynomials

  • Kevin Doerksen EMAIL logo und Anna Haensch
Veröffentlicht/Copyright: 31. Mai 2012
Veröffentlichen auch Sie bei De Gruyter Brill
Integers
Aus der Zeitschrift Band 12 Heft 3

Abstract.

Let be a sequence of integers. A primitive prime divisor of a term is a prime which divides but does not divide any of the previous terms of the sequence. A zero orbit of a polynomial is a sequence of integers where the n-th term is the n-th iterate of at 0. We consider primitive prime divisors of zero orbits of polynomials. In this note, we show that for in , where and , every iterate in the zero orbit of contains a primitive prime divisor whenever zero has an infinite orbit. If , then every iterate after the first contains a primitive prime divisor.

Received: 2010-09-20
Revised: 2011-06-02
Accepted: 2012-01-01
Published Online: 2012-05-31
Published in Print: 2012-June

© 2012 by Walter de Gruyter Berlin Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/integers-2011-0117/html
Button zum nach oben scrollen