Startseite Communal Partitions of Integers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Communal Partitions of Integers

  • Darren B. Glass EMAIL logo
Veröffentlicht/Copyright: 31. Mai 2012
Veröffentlichen auch Sie bei De Gruyter Brill
Integers
Aus der Zeitschrift Band 12 Heft 3

Abstract.

There is a well-known formula due to Andrews that counts the number of incongruent triangles with integer sides and a fixed perimeter. In this note, we consider the analogous question counting the number of k-tuples of nonnegative integers none of which is more than of the sum of all the integers. We give an explicit function for the generating function which counts these k-tuples in the case where they are ordered, unordered, or partially ordered. Finally, we discuss the application to algebraic geometry which motivated this question.

Received: 2011-06-28
Revised: 2011-08-26
Accepted: 2011-11-22
Published Online: 2012-05-31
Published in Print: 2012-June

© 2012 by Walter de Gruyter Berlin Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/integ.2011.111/pdf
Button zum nach oben scrollen