Startseite Van der Waerden's Theorem and Avoidability in Words
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Van der Waerden's Theorem and Avoidability in Words

  • Yu-Hin Au EMAIL logo , Aaron Robertson und Jeffrey Shallit
Veröffentlicht/Copyright: 24. Februar 2011
Veröffentlichen auch Sie bei De Gruyter Brill
Integers
Aus der Zeitschrift Band 11 Heft 1

Abstract

Independently, Pirillo and Varricchio, Halbeisen and Hungerbühler and Freedman considered the following problem, open since 1992: Does there exist an infinite word w over a finite subset of ℤ such that w contains no two consecutive blocks of the same length and sum? We consider some variations on this problem in the light of van der Waerden's theorem on arithmetic progressions.

Received: 2010-08-03
Revised: 2010-11-11
Accepted: 2010-11-26
Published Online: 2011-02-24
Published in Print: 2011-February

© de Gruyter 2011

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/integ.2011.007/html?lang=de
Button zum nach oben scrollen