Home Hybrid solitary wave solutions of the Camassa–Holm equation
Article
Licensed
Unlicensed Requires Authentication

Hybrid solitary wave solutions of the Camassa–Holm equation

  • Hugues M. Omanda , Clovis T. Djeumen Tchaho and Didier Belobo Belobo ORCID logo EMAIL logo
Published/Copyright: October 10, 2022

Abstract

The Camassa–Holm equation governs the dynamics of shallow water waves or in its reduced form models nonlinear dispersive waves in hyperelastic rods. By using the straightforward Bogning-Djeumen Tchaho-Kofané method, explicit expressions of many solitary wave solutions with different profiles not previously derived in the literature are constructed and classified. Geometric characterizations of the solutions in terms of three new mappings are presented. Intensive numerical simulations carried confirm the stability of the solutions even with relatively high critical velocities and reveal that solitary waves with large widths are more stable than the ones with small widths.


Corresponding author: Didier Belobo Belobo, African Centre for Advanced Studies, P.O. Box 4477, Yaounde, Cameroon; Department of Mathematics and Physical Sciences, National Advanced School of Engineering, University of Yaounde I, P.O. Box 8390, Yaounde, Cameroon; and Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: D. B. B. gratefully acknowledges support via a research fellowship from The World Academy of Sciences (TWAS) and the German Research Foundation (DFG) through the TWAS-DFG Cooperation Visits Programme.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

The following equations stemming from Eq. (7) were used to derive the families of solutions presented above.

Term in sech11(αξ): (A.1) 510α 3 a 1 b 1 = 0

the term in sech10(αξ): (A.2) 336α 3 c 1 b 1 = 0

Term in sech9(αξ): (A.3) 204 α 3 a + ( 24 α 1037 α 3 ) a 1 b 1 296 α 3 a 1 b = 0

Term in sech8(αξ): (A4) 108 α 3 c + ( 21 α 862 α 3 ) c 1 b 1 182 α 3 c 1 b = 0

Term in sech7(αξ): (A5) ( 18 α 363 α 3 ) a + ( 634 α 3 39 α ) a 1 b 1 + 102 α 3 a + ( 409 α 3 18 α ) a 1 b = 0

Term in sech6(αξ): (A6) ( 170 α 3 15 α ) c + ( 696 α 3 63 α ) c 1 b 1 + 38 α 3 c + ( 336 α 3 15 α ) c 1 b = 0

Term in sech5(αξ): (A7) ( 198 α 3 27 α ) a + ( 15 α 125 α 3 ) a 1 b 1 + ( 121 α 3 12 α ) a + ( 15 α 125 α 3 ) a 1 b = 0

Term in sech4(αξ): (A8) 6 α k ( 18 α 3 + 3 α ) ν + ( 30 α 34 α 3 ) c + ( 63 α 150 α 3 ) c 1 b 1 + 6 α 3 ν + ( 9 α 46 α 3 ) c + ( 30 α 174 α 3 ) c 1 b = 0

Term in sech3(αξ): (A9) (9α − 27α 3)(b 1 + b)a = 0

Term in sech2(αξ): (A10) ( 3 α + 36 α 3 ) ν 6 α k ( 28 α 3 + 15 α ) c ( 20 α 3 + 21 α ) c 1 b 1 + ( α 4 α 3 ) ν 2 α k + ( 12 α 3 9 α ) c + ( 20 α 3 15 α ) c 1 b = 0 .

References

[1] R. Camassa and D. D. Holm, “An integrable shallow water equation with peaked solitons,” Phys. Rev. Lett., vol. 71, pp. 1661–1664, 1993. https://doi.org/10.1103/physrevlett.71.1661.Search in Google Scholar

[2] A. Fokas and B. Fuchssteiner, “Symplectic structures, their Bäcklund transformations and hereditary symmetries,” Physica D, vol. 4, pp. 47–66, 1981. https://doi.org/10.1016/0167-2789(81)90004-x.Search in Google Scholar

[3] R. S. Johnson, “Camassa-Holm, Korteweg-de Vries and related models for water waves,” J. Fluid Mech., vol. 455, pp. 63–82, 2002. https://doi.org/10.1017/s0022112001007224.Search in Google Scholar

[4] A. Constantin and J. Escher, “Global existence and blow-up for a shallow water equation,” Ann. Sc. Norm. Super. Pisa - Cl. Sci., vol. 26, pp. 303–328, 1998.Search in Google Scholar

[5] A. Constantin, “Existence of permanent and breaking waves for a shallow water equation: a geometric approach,” Ann. Inst. Fourier, vol. 50, pp. 321–362, 2000. https://doi.org/10.5802/aif.1757.Search in Google Scholar

[6] A. Constantin and W. Strauss, “Stability of peakons,” Commun. Pure Appl. Math., vol. 53, pp. 603–610, 2000. https://doi.org/10.1002/(sici)1097-0312(200005)53:5<603::aid-cpa3>3.0.co;2-l.10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-LSearch in Google Scholar

[7] H. H. Dai, “Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods,” Wave Motion, vol. 28, pp. 367–381, 1998. https://doi.org/10.1016/s0165-2125(98)00014-6.Search in Google Scholar

[8] A. Parker, “On the Camassa-Holm equation and a direct method of solution I. Bilinear form and solitary waves,” Proc. R. Soc. A, vol. 460, pp. 2929–2957, 2004. https://doi.org/10.1098/rspa.2004.1301.Search in Google Scholar

[9] H. H. Dai, “Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod,” Acta Mech., vol. 127, pp. 193–207, 1998. https://doi.org/10.1007/bf01170373.Search in Google Scholar

[10] S. Kouranbaeva, “The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,” J. Math. Phys., vol. 40, pp. 857–868, 1998. https://doi.org/10.1063/1.532690.Search in Google Scholar

[11] A. Bressan and A. Constantin, “Global conservative solutions of the camassa-holm equation,” Arch. Ration. Mech. Anal., vol. 183, pp. 215–239, 2007. https://doi.org/10.1007/s00205-006-0010-z.Search in Google Scholar

[12] A. I. Zenchuk, “∂̄$\bar{\partial }$-problem for the generalized Korteweg-de Vries equation -dressing,” JETP Lett., vol. 68, pp. 715–755, 1998. https://doi.org/10.1134/1.567940.Search in Google Scholar

[13] R. A. Kraenkel and A. I. Zenchuk, “Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions,” J. Phys. Math. Gen., vol. 32, pp. 4733–4747, 1999. https://doi.org/10.1088/0305-4470/32/25/313.Search in Google Scholar

[14] G. Misiolek, “A shallow water equation as a geodesic flow on the Bott-Virasoro group,” J. Geom. Phys., vol. 24, pp. 203–208, 1998. https://doi.org/10.1016/s0393-0440(97)00010-7.Search in Google Scholar

[15] A. S. Fokas, “On a class of physically important integrable equations,” Physica D, vol. 87, pp. 145–150, 1995. https://doi.org/10.1016/0167-2789(95)00133-o.Search in Google Scholar

[16] A. S. Fokas, P. Olver, and P. Rosenau, “A plethora of integrable Bi-Hamiltonian equations,” Prog. Nonlinear Differ. Equ. Appl., vol. 26, pp. 93–101, 1997.10.1007/978-1-4612-2434-1_5Search in Google Scholar

[17] B. Fuchssteiner, “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the camassa-holm equation,” Physica D, vol. 95, pp. 229–243, 1996. https://doi.org/10.1016/0167-2789(96)00048-6.Search in Google Scholar

[18] F. Gesztesy and H. Holden, “Algebra-Geometric solutions of the camassa-holm hierarchy,” Rev. Matemática Iberoam., vol. 19, pp. 73–142, 2003. https://doi.org/10.4171/rmi/339.Search in Google Scholar

[19] H. P. McKean, “Integrable systems and algebraic curves,” in Lecture Notes in Mathematics, M. Grmela and J. E. Marsden, Eds., Berlin, Heidelberg, Springer, 2006, pp. 83–2000.10.1007/BFb0069806Search in Google Scholar

[20] A. Constantin, “On the scattering problem for the Camassa-Holm equation,” Proc. R. Soc. London, A, vol. 457, pp. 953–970, 2001. https://doi.org/10.1098/rspa.2000.0701.Search in Google Scholar

[21] R. S. Jonhson, “On solutions of the Camassa-Holm equation,” Proc. R. Soc. London, A, vol. 459, pp. 1687–1708, 2003. https://doi.org/10.1098/rspa.2002.1078.Search in Google Scholar

[22] J. P. Boyd, “Peakons and coshoidal waves: traveling wave solutions of the Camassa-Holm equation,” Appl. Math. Comput., vol. 81, pp. 173–187, 1997. https://doi.org/10.1016/0096-3003(95)00326-6.Search in Google Scholar

[23] S. Abbasbandy and J. E. Parkes, “Solitary smooth hump solutions of the Camassa-Holm equation by means of the homotopy analysis method,” Chaos, Solit. Fractals, vol. 36, pp. 581–591, 2008. https://doi.org/10.1016/j.chaos.2007.10.034.Search in Google Scholar

[24] H. H. Dai, Y. Li, and T. Su, “Multi-soliton and multi-cuspon solutions of a Camassa-Holm hierarchy and their interactions,” J. Phys. Math. Theor., vol. 42, pp. 055203–055215, 2009. https://doi.org/10.1088/1751-8113/42/5/055203.Search in Google Scholar

[25] A. Parker, “On the Camassa-Holm equation and a direct method of solution III. N-soliton solutions,” Proc. R. Soc. A., vol. 461, pp. 3893–3911, 2005. https://doi.org/10.1098/rspa.2005.1537.Search in Google Scholar

[26] A. Parker, “On the Camassa-Holm equation and a direct method of solution II. Soliton solutions,” Proc. R. Soc. A, vol. 461, pp. 3611–3632, 2005. https://doi.org/10.1098/rspa.2005.1536.Search in Google Scholar

[27] H. H. Dai and Y. Li, “The interaction of the ω-soliton and ω-cuspon of the Camassa-Holm equation,” J. Phys. Math. Gen., vol. 38, pp. L685–L694, 2005. https://doi.org/10.1088/0305-4470/38/42/l04.Search in Google Scholar

[28] R. Camassa, D. D. Holm, and J. M. Hyman, “A new integrable shallow water equation,” Adv. Appl. Mech., vol. 31, pp. 1–33, 1994.10.1016/S0065-2156(08)70254-0Search in Google Scholar

[29] S. P. Popov, “Numerical study of peakons and k-solitons of the camassa-holm and holm-hone equations,” Comput. Math. Math. Phys., vol. 51, pp. 1231–1238, 2011. https://doi.org/10.1134/s0965542511070153.Search in Google Scholar

[30] J. Lenells, “Traveling wave solutions of the Camassa-Holm equation,” J. Differ. Equ., vol. 217, pp. 393–430, 2005. https://doi.org/10.1016/j.jde.2004.09.007.Search in Google Scholar

[31] J. R. Bogning, C. T. Djeumen Tchaho, and T. C. Kofané, “Construction of the soliton solutions of the Ginzburg-Landau equations by the new Bogning-Djeumen Tchaho-Kofané method,” Phys. Scripta, vol. 85, pp. 025013–025017, 2012. https://doi.org/10.1088/0031-8949/85/02/025013.Search in Google Scholar

[32] J. R. Bogning, C. T. Djeumen Tchaho, and T. C. Kofané, “Solitary wave solutions of the modified Sasa-Satsuma nonlinear partial differential equation,” Am. J. Comput. Appl. Math., vol. 3, pp. 131–137, 2013.Search in Google Scholar

[33] J. R. Bogning, C. T. Djeumen Tchaho, and T. C. Kofané, “Generalization of the Bogning-Djeumen Tchaho- Kofané method for the construction of solitary waves and the survey of the instabilities,” Far. East J. Dynam. Syst., vol. 20, pp. 101–119, 2012.Search in Google Scholar

[34] C. T. Djeumen Tchaho, H. M. Omanda, and D. Belobo Belobo, “Hybrid solitary waves for the generalized Kuramoto-Sivashinsky equation,” Eur. Phys. J. Plus, vol. 133, pp. 387–395, 2018. https://doi.org/10.1140/epjp/i2018-12218-4.Search in Google Scholar

[35] A. R. Seadawy and S. Z. Alamri, “Mathematical methods via the nonlinear two-dimensional water waves of Olver dynamical equation and its exact solitary wave solutions,” Results Phys., vol. 8, pp. 276–289, 2018. https://doi.org/10.1016/j.rinp.2017.12.008.Search in Google Scholar

[36] A. R. Seadawy, “Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas,” Pramana - J. Phys., vol. 89, pp. 49–59, 2017. https://doi.org/10.1007/s12043-017-1446-4.Search in Google Scholar

[37] A. R. Seadawy, “Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma,” Math. Methods Appl. Sci., vol. 40, pp. 1598–1607, 2017. https://doi.org/10.1002/mma.4081.Search in Google Scholar

[38] I. A. Aliyu, M. Inc, A. Yusuf, and D. Baleanu, “A fractional model of vertical transmission and cure of vector-borne diseases pertaining to the Atangana-Baleanu fractional derivatives,” Chaos, Solit. Fractals, vol. 116, pp. 268–277, 2018. https://doi.org/10.1016/j.chaos.2018.09.043.Search in Google Scholar

[39] X. F. Yang, Z. C. Deng, and Y. Wei, “A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application,” Adv. Differ. Equ., vol. 2015, pp. 117–133, 2015. https://doi.org/10.1186/s13662-015-0452-4.Search in Google Scholar

[40] A. Yusuf, M. Inc, I. A. Aliyu, and D. Baleanu, “Beta derivative applied to dark and singular optical solitons for the resonance perturbed NLSE,” Eur. Phys. J. Plus, vol. 134, pp. 433–440, 2019. https://doi.org/10.1140/epjp/i2019-12810-0.Search in Google Scholar

[41] M. A. Salam, M. S. Uddin, and P. Dey, “Generalized Bernoulli sub-ODE method and its applications,” Ann. Pure Appl. Math., vol. 10, pp. 1–6, 2015.Search in Google Scholar

[42] A. Yusuf, M. Inc, and M. Bayram, “Invariant and simulation analysis to the time fractional Abrahams-Tsuneto reaction diffusion system,” Phys. Scr., vol. 94, pp. 125005–125027, 2019. https://doi.org/10.1088/1402-4896/ab373b.Search in Google Scholar

[43] S. B. G. Karakoc, T. Geyikli, and A. Bashan, “A numerical solution of the Modified Regularized Long Wave MRLW equation using quartic B-splines,” TWMS J. App. Eng. Math., vol. 3, pp. 231–244, 2013.10.1186/1687-2770-2013-27Search in Google Scholar

[44] S. B. G. Karakoc and T. Geyikli, “Petrov-Galerkin finite element method for solving the MRLW equation,” Math. Sci., vol. 7, pp. 1–10, 2013.10.1186/2251-7456-7-25Search in Google Scholar

[45] S. K. Bhowmik and S. B. G. Karakoc, “Numerical approximation of the gen- eralized regularized long wave equation using Petrov-Galerkin finite element method,” Numer. Methods Part. Differ. Equ., vol. 35, pp. 2236–2257, 2019. https://doi.org/10.1002/num.22410.Search in Google Scholar

[46] H. Zeybek and S. B. G. Karakoc, “Application of the collocation method with B-splines to the GEW equation,” Electron. Trans. Numer. Anal., vol. 44, pp. 71–88, 2017.Search in Google Scholar

[47] M. S. Fabien, “Spectral methods for partial differential equations that model shallow water wave phenomena,” Masters Thesis, University of Washinton, 2019.Search in Google Scholar

Received: 2021-08-29
Revised: 2022-09-06
Accepted: 2022-09-18
Published Online: 2022-10-10

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Article
  3. Hybrid solitary wave solutions of the Camassa–Holm equation
  4. Numerical simulations of wave propagation in a stochastic partial differential equation model for tumor–immune interactions
  5. A Chebyshev collocation method for solving the non-linear variable-order fractional Bagley–Torvik differential equation
  6. Higher order codimension bifurcations in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect
  7. Numerical modeling of the dam-break flood over natural rivers on movable beds
  8. A class of piecewise fractional functional differential equations with impulsive
  9. Lie symmetry analysis for two-phase flow with mass transfer
  10. Asymptotic behavior for stochastic plate equations with memory in unbounded domains
  11. Discussion on controllability of non-densely defined Hilfer fractional neutral differential equations with finite delay
  12. A linearized finite difference scheme for time–space fractional nonlinear diffusion-wave equations with initial singularity
  13. Ground state solutions of Schrödinger system with fractional p-Laplacian
  14. Bifurcation analysis of a new stochastic traffic flow model
  15. An uncertainty measure based on Pearson correlation as well as a multiscale generalized Shannon-based entropy with financial market applications
  16. Hilfer fractional stochastic evolution equations on infinite interval
  17. Iterative learning control for conformable stochastic impulsive differential systems with randomly varying trial lengths
  18. Chebyshev wavelet-Picard technique for solving fractional nonlinear differential equations
  19. Theoretical assessment of the impact of awareness programs on cholera transmission dynamic
  20. Theoretical and numerical analysis of a prey–predator model (3-species) in the frame of generalized Mittag-Leffler law
  21. Controllability discussion for fractional stochastic Volterra–Fredholm integro-differential systems of order 1 < r < 2
  22. Shehu transform on time-fractional Schrödinger equations – an analytical approach
  23. A (2 + 1)-dimensional variable-coefficients extension of the Date–Jimbo–Kashiwara–Miwa equation: Lie symmetry analysis, optimal system and exact solutions
  24. Mathematical model of fluid flow in a double constricted tapered tube with permeable boundary
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0340/html?lang=en
Scroll to top button