Startseite Analysis and numerical effects of time-delayed rabies epidemic model with diffusion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis and numerical effects of time-delayed rabies epidemic model with diffusion

  • Muhammad Jawaz , Muhammad Aziz-ur Rehman , Nauman Ahmed ORCID logo EMAIL logo , Dumitru Baleanu ORCID logo , Muhammad Sajid Iqbal , Muhammad Rafiq und Ali Raza ORCID logo
Veröffentlicht/Copyright: 7. Juli 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The current work is devoted to investigating the disease dynamics and numerical modeling for the delay diffusion infectious rabies model. To this end, a non-linear diffusive rabies model with delay count is considered. Parameters involved in the model are also described. Equilibrium points of the model are determined and their role in studying the disease dynamics is identified. The basic reproduction number is also studied. Before going towards the numerical technique, the definite existence of the solution is ensured with the help of the Schauder fixed point theorem. A standard result for the uniqueness of the solution is also established. Mapping properties and relative compactness of the operator are studied. The proposed finite difference method is introduced by applying the rules defined by R.E. Mickens. Stability analysis of the proposed method is done by implementing the Von–Neumann method. Taylor’s expansion approach is enforced to examine the consistency of the said method. All the important facts of the proposed numerical device are investigated by presenting the appropriate numerical test example and computer simulations. The effect of τ on infected individuals is also examined, graphically. Moreover, a fruitful conclusion of the study is submitted.


Corresponding author: Nauman Ahmed, Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan, E-mail:

Acknowledgement

The authors would like to thank anonymous referees for the useful comments and suggestions which led to an improved paper.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. R. Fooks, A. C. Banyard, D. L. Horton, N. Johnson, L. M. Mc Elhinney, and A. C. Jackson, “Current status of rabies and prospects for elimination,” Lancet, vol. 384, pp. 1389–1399, 2014. https://doi.org/10.1016/s0140-6736(13)62707-5.Suche in Google Scholar

[2] Centers for Disease Control and Prevention (CDC), Rabies, 2011. Available at: http://www.cdc.gov/rabies/ [accessed: October 5, 2016].Suche in Google Scholar

[3] D. Stewart, Rabies, 2021, Available at: https://www.who.int/news-room/fact-sheets/detail/rabies.Suche in Google Scholar

[4] A. C. Jackson and H. W. William, Rabies, 2nd ed. London, UK, Elsevier, 2007, Copyright 2002.Suche in Google Scholar

[5] R. Singh, k. P. Singh, M. Saminathan, S. Vineetha, R. G. B. Manjunatha, M. Maity, S. Cherian, and K. Dhama, “Rabies, a vaccine preventable disease: current status, epidemiology, pathogenesis, prevention and control with special reference to India,” J. Exp. Biol. Agric. Sci., vol. 6, no. 1, pp. 62–86, 2018. https://doi.org/10.18006/2018.6(1).62.86.Suche in Google Scholar

[6] E. G. Hudson, V. J. Brookes, S. Dürr, and M. P. Ward, “Modelling targeted rabies vaccination strategies for a domestic dog population with heterogeneous roaming patterns,” PLoS Neglected Trop. Dis., vol. 13, no. 7, 2019, Art no. e0007582. https://doi.org/10.1371/journal.pntd.0007582.Suche in Google Scholar PubMed PubMed Central

[7] J. Zhang, Z. Jin, G. Q. Sun, X. D. Sun, and S. Ruan, “Modeling seasonal rabies epidemics in China,” Bull. Math. Biol., vol. 74, pp. 1226–1251, 2012. https://doi.org/10.1007/s11538-012-9720-6.Suche in Google Scholar PubMed PubMed Central

[8] M. Z. Ndii, Z. Amarti, E. D. Wiraningsih, and A. K. Supriatna, “Rabies epidemic model with uncertainty in parameters: crisp and fuzzy approaches,” IOP Conf. Ser. Mater. Sci. Eng., vol. 332, p. 012031, 2018. https://doi.org/10.1088/1757-899x/332/1/012031.Suche in Google Scholar

[9] V. Tricou, J. Bouscaillou, E. K. Mebourou, F. D. Koyanongo, E. Nakoune, and M. Kazanji, “Surveillance of canine rabies in the Central African Republic: impact on human health and molecular epidemiology,” PLoS Neglected Trop. Dis., vol. 10, no. 2, 2016, Art no. e0004433. https://doi.org/10.1371/journal.pntd.0004433.Suche in Google Scholar PubMed PubMed Central

[10] A. Mahadevan, M. S. Suja, R. S. Mani, and S. K. Shankar, “Perspectives in diagnosis and treatment of rabies viral encephalitis: insights from pathogenesis,” Neurotherapeutics, vol. 13, pp. 477–492, 2016. https://doi.org/10.1007/s13311-016-0452-4.Suche in Google Scholar PubMed PubMed Central

[11] M. A. MacGibeny, O. O. Koyuncu, C. Wirblich, M. J. Schnell, and L. W. Enquist, “Retrograde axonal transport of rabies virus is unaffected by interferon treatment but blocked by emetine locally in axons,” PLoS Pathog., vol. 14, no. 7, 2018, Art no. e1007188. https://doi.org/10.1371/journal.ppat.1007188.Suche in Google Scholar PubMed PubMed Central

[12] J. P. Gillet, P. Derer, and H. Tsiang, “Axonal transport of rabies virus in the central nervous system of the rat,” J. Neuropathol. Exp. Neurol., vol. 45, no. 6, pp. 619–634, 1986. https://doi.org/10.1097/00005072-198611000-00002.Suche in Google Scholar PubMed

[13] N. Salahuddin, M. A. Gohar, and N. Baig-Ansari, “Reducing cost of rabies post exposure prophylaxis: experience of a tertiary care hospital in Pakistan,” PLoS Neglected Trop. Dis., vol. 10, no. 2, Art no. e0004448. https://doi.org/10.1371/journal.pntd.0004448.Suche in Google Scholar PubMed PubMed Central

[14] S. N. Madhusudana and S. M. Sukumaran, “Antemortem diagnosis and prevention of human rabies,” Ann. Indian Acad. Neurol., vol. 11, no. 1, pp. 3–12, 2008. https://doi.org/10.4103/0972-2327.40219.Suche in Google Scholar PubMed PubMed Central

[15] E. De-Francesco, G. B. da-Silva, M. Thomaz, F. A. de-Sousa, T. Magalhães, and R. M. do-Socorro-Vidal, “Renal involvenent in human rabies: clinical manifestations and autopsy findings of nine cases from northeast of Brazil,” Rev. Inst. Med. Trop. S. Paulo, vol. 47, no. 6, pp. 315–320, 2005.10.1590/S0036-46652005000600002Suche in Google Scholar

[16] T. P. Scott and L. H. Nel, “Subversion of the immune response by rabies virus,” Viruses, vol. 8, no. 8, p. 231, 2016. https://doi.org/10.3390/v8080231.Suche in Google Scholar PubMed PubMed Central

[17] `Y. Iwasaki and M. Tobita, “8 - pathology,” in Rabies, A. C. Jackson and W. H. Wunner, Eds., San Diego, USA, Academic Press, 2003, pp. 283–306.10.1016/B978-012379077-4/50010-9Suche in Google Scholar

[18] S. Miao, T. Qing, R. Simon, T. X. Yan, S. X. Xin, and L. G. Dong, “Factors influencing the number of rabies cases in children in China,” Biomed. Environ. Sci., vol. 27, no. 8, pp. 627–632, 2014.Suche in Google Scholar

[19] H. Tian, Y. Feng, B. Vrancken, B. Cazelles, H. Tan, M. S. Gill, et al.., “Transmission dynamics of re-emerging rabies in domestic dogs of rural China,” PLoS Pathog., vol. 14, no. 12, 2018, Art no. e1007392. https://doi.org/10.1371/journal.ppat.1007392.Suche in Google Scholar PubMed PubMed Central

[20] A. Simon, O. Tardy, A. Hurford, N. Lecomte, D. Bélanger, and P. Leighton, “Dynamics and persistence of rabies in the Arctic,” Polar Res., vol. 38, 2019. https://doi.org/10.33265/polar.v38.3366.Suche in Google Scholar

[21] M. Ruzhansky and N. Yessirkegenov, “Existence and non-existence of global solutions for semilinear heat equations and inequalities on sub-Riemannian manifolds, and Fujita exponent on unimodular Lie groups,” J. Differ. Equ., vol. 308, pp. 455–473, 2022. https://doi.org/10.1016/j.jde.2021.10.058.Suche in Google Scholar

[22] N. Chikami, M. Ikeda, and K. Taniguchi, “Well-posedness and global dynamics for the critical Hardy-Sobolev parabolic equation,” Nonlinearity, vol. 34, p. 8094, 2021. https://doi.org/10.1088/1361-6544/ac2c90.Suche in Google Scholar

[23] A. Elsonbaty, S. Zulqurnain, R. Rajagopalan, and A. Waleed, “Dynamical analysis of a novel discrete fractional sitrs model for covid-19,” Fractals, p. 2140035, 2021. https://doi.org/10.1142/s0218348x21400351.Suche in Google Scholar

[24] N. Ahmed, M. Rafiq, W. Adel, H. Rezazadeh, I. Khan, and K. S. Nisar, “Structure preserving numerical analysis of HIV and CD4+ T-cells reaction diffusion model in two space dimensions,” Chaos, Solit. Fractals, vol. 139, p. 110307, 2020. https://doi.org/10.1016/j.chaos.2020.110307.Suche in Google Scholar

[25] W. Wu and Z. Teng, “Traveling waves in nonlocal dispersal SIR epidemic model with nonlinear incidence and distributed latent delay,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–26, 2020. https://doi.org/10.1186/s13662-020-03073-2.Suche in Google Scholar

[26] M. Asif, Z. A. Khan, N. Haider, and Q. Al-Mdallal, “Numerical simulation for solution of SEIR models by meshless and finite difference methods,” Chaos, Solit. Fractals, vol. 141, p. 110340, 2020. https://doi.org/10.1016/j.chaos.2020.110340.Suche in Google Scholar

[27] S. Abdulmajid and A. S. Hassan, “Analysis of time delayed Rabies model in human and dog populations with controls,” Afrika Matematika, 2021, vol. 32, pp. 1–19. https://doi.org/10.1007/s13370-021-00882-w.Suche in Google Scholar

[28] J. E. Macías-Díaz and A. Puri, “A numerical method with properties of consistency in the energy domain for a class of dissipative nonlinear wave equations with applications to a Dirichlet boundary-value problem,” ZAMM-J. Appl. Math. Mech., vol. 88, no. 10, pp. 828–846, 2008. https://doi.org/10.1002/zamm.200700172.Suche in Google Scholar

[29] J. E. Macías-Díaz, I. E. Medina-Ramírez, and A. Puri, “Numerical treatment of the spherically symmetric solutions of a generalized Fisher-Kolmogorov-Petrovsky-Piscounov equation,” J. Comput. Appl. Math., vol. 231, no. 2, pp. 851–868, 2009. https://doi.org/10.1016/j.cam.2009.05.008.Suche in Google Scholar

[30] J. E. Macías-Díaz and A. Szafrańska, “Existence and uniqueness of monotone and bounded solutions for a finite-difference discretization à la Mickens of the generalized Burgers-Huxley equation,” J. Differ. Equ. Appl., vol. 20, no. 7, pp. 989–1004, 2014. https://doi.org/10.1080/10236198.2013.877457.Suche in Google Scholar

[31] J. E. Macías-Díaz and I. E. Medina-Ramírez, “An implicit four-step computational method in the study on the effects of damping in a modified ?-Fermi-Pasta-Ulam medium,” Commun. Nonlinear Sci. Numer. Simulat., vol. 14, no. 7, pp. 3200–3212, 2009. https://doi.org/10.1016/j.cnsns.2008.12.013.Suche in Google Scholar

[32] M. D. Morales-Hernández, I. E. Medina-Ramírez, F. J. Avelar-González, and J. E. Macías-Díaz, “An efficient recursive algorithm in the computational simulation of the bounded growth of biological films,” Int. J. Comput. Methods, vol. 9, no. 04, p. 1250050, 2012. https://doi.org/10.1142/s0219876212500508.Suche in Google Scholar

[33] A. Kaddar, A. Abta, and H. T. Alaoui, “A comparison of delayed SIR and SEIR epidemic models,” Nonlinear Anal. Model Control, vol. 16, no. 2, pp. 181–190, 2011. https://doi.org/10.15388/na.16.2.14104.Suche in Google Scholar

[34] S. Chinviyasit and W. Chinviyasit, “Numerical modeling of an SIR epidemic model with diffusion,” J. Appl. Math. Comput., vol. 216, pp. 395–409, 2010.10.1016/j.amc.2010.01.028Suche in Google Scholar

[35] R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations, London, World Scientific, 1994.10.1142/2081Suche in Google Scholar

Received: 2021-06-10
Revised: 2022-04-07
Accepted: 2022-06-19
Published Online: 2022-07-07

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Frequency responses for induced neural transmembrane potential by electromagnetic waves (1 kHz to 1 GHz)
  4. Investigating existence results for fractional evolution inclusions with order r ∈ (1, 2) in Banach space
  5. Optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential
  6. Generalized forms of fractional Euler and Runge–Kutta methods using non-uniform grid
  7. Controllability of coupled fractional integrodifferential equations
  8. A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems
  9. Rational soliton solutions in the nonlocal coupled complex modified Korteweg–de Vries equations
  10. Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array
  11. Analysis and numerical effects of time-delayed rabies epidemic model with diffusion
  12. Two occurrences of fractional actions in nonlinear dynamics
  13. Multiwave interaction solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics
  14. Effects of mixed time delays and D operators on fixed-time synchronization of discontinuous neutral-type neural networks
  15. Solvability and stability of nonlinear hybrid ∆-difference equations of fractional-order
  16. Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator
  17. Simulation and modeling of different cell shapes for closed-cell LM-13 alloy foam for compressive behavior
  18. Pandemic management by a spatio–temporal mathematical model
  19. Adaptive ADI difference solution of quenching problems based on the 3D convection–reaction–diffusion equation
  20. Null controllability of Hilfer fractional stochastic integrodifferential equations with noninstantaneous impulsive and Poisson jump
  21. Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire
  22. Modeling the spatiotemporal intracellular calcium dynamics in nerve cell with strong memory effects
  23. Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives
  24. Improving the dynamic behavior of the plate under supersonic air flow by using nonlinear energy sink
Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0233/pdf?lang=de
Button zum nach oben scrollen