Startseite N-soliton solutions and the Hirota conditions in (1 + 1)-dimensions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

N-soliton solutions and the Hirota conditions in (1 + 1)-dimensions

  • Wen-Xiu Ma EMAIL logo
Veröffentlicht/Copyright: 1. März 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We analyze N-soliton solutions and explore the Hirota N-soliton conditions for scalar (1 + 1)-dimensional equations, within the Hirota bilinear formulation. An algorithm to verify the Hirota conditions is proposed by factoring out common factors out of the Hirota function in N wave vectors and comparing degrees of the involved polynomials containing the common factors. Applications to a class of generalized KdV equations and a class of generalized higher-order KdV equations are made, together with all proofs of the existence of N-soliton solutions to all equations in two classes.

MSC 2010: 35Q51; 35Q53; 37K40

Corresponding author: Wen-Xiu Ma, Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA; School of Mathematics, South China University of Technology, Guangzhou 510640, China; and School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa, E-mail:

Funding source: NSFC

Award Identifier / Grant number: 11975145, 11972291

Acknowledgments

The work was supported in part by NSFC under the Grants 11975145 and 11972291. The author would also like to thank Yushan Bai, Yehui Huang, Xing Lü, Solomon Manukure, Morgan McAnally and Fudong Wang for their valuable discussions.

  1. Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: NSFC under the grants 11975145 and 11972291.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

[1] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, Philadelphia, SIAM, 1981.10.1137/1.9781611970883Suche in Google Scholar

[2] F. Calogero and A. Degasperis, Solitons and Spectral Transform I, Amsterdam, North-Holland, 1982.Suche in Google Scholar

[3] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, New York, Consultants Bureau, 1984.Suche in Google Scholar

[4] R. Hirota, Direct Method in Soliton Theory, Cambridge, Cambridge University Press, 2004.10.1017/CBO9780511543043Suche in Google Scholar

[5] R. Hirota, “A new form of Bäcklund transformations and its relation to the inverse scattering problem,” Prog. Theor. Phys., vol. 52, pp. 1498–1512, 1974. https://doi.org/10.1143/ptp.52.1498.Suche in Google Scholar

[6] W. X. Ma, “Bilinear equations, Bell polynomials and linear superposition principle,” J. Phys.: Conf. Ser., vol. 411, p. 012021, 2013. https://doi.org/10.1088/1742-6596/411/1/012021.Suche in Google Scholar

[7] W. X. Ma, “Bilinear equations and resonant solutions characterized by Bell polynomials,” Rep. Math. Phys., vol. 72, pp. 41–56, 2013. https://doi.org/10.1016/s0034-4877(14)60003-3.Suche in Google Scholar

[8] W. X. Ma, C. X. Li, and J. S. He, “A second Wronskian formulation of the Boussinesq equation,” Nonlinear Anal.: TMA, vol. 70, pp. 4245–4258, 2009. https://doi.org/10.1016/j.na.2008.09.010.Suche in Google Scholar

[9] R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett., vol. 27, pp. 1192–1194, 1971. https://doi.org/10.1103/physrevlett.27.1192.Suche in Google Scholar

[10] R. Hirota Direct Methods in Soliton Theory, Solitons, R. K. Bullough and P. Caudrey, Eds., Berlin, Heidelberg, Springer-Verlag, 1980.10.1007/978-3-642-81448-8_5Suche in Google Scholar

[11] K. Sawada and T. Kotera, “A method for finding N-soliton solutions of the K.d.V. equation and K.d.V.-like equation,” Prog. Theor. Phys., vol. 51, pp. 1355–1367, 1974. https://doi.org/10.1143/ptp.51.1355.Suche in Google Scholar

[12] Caudrey, P. J., Dodd, R. K., Gibbon, J. D., A new hierarchy of Korteweg–de Vries equations, Proc. R. Soc. Lond. A, vol. 351, pp. 407–422, 1976. https://doi.org/10.1098/rspa.1976.0149.Suche in Google Scholar

[13] A. C. Newell and Y. B. Zeng, “The Hirota conditions,” J. Math. Phys., vol. 27, pp. 2016–2021, 1986. https://doi.org/10.1063/1.527020.Suche in Google Scholar

[14] Guo, F. K., A simple approach to negating the Hirota condition, Acta Math. Appl. Sin. 14 (1991) 111–114. http://www.applmath.com.cn/EN/volumn/volumn_1490.shtml.Suche in Google Scholar

[15] J. Hietarinta, “A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations,” J. Math. Phys., vol. 28, pp. 1732–1742, 1987. https://doi.org/10.1063/1.527815.Suche in Google Scholar

[16] J. Hietarinta, “Introduction to the Hirota bilinear method,” in Integrability of Nonlinear Systems, Lecture Notes in Physics, vol. 495, Y. Kosmann-Schwarzbach, B. Grammaticos, and K. M. Tamizhmani, Eds., Berlin, Springer, 1997, pp. 95–103.10.1007/BFb0113694Suche in Google Scholar

[17] W. Hereman and W. Zhuang, “Symbolic software for soliton theory,” Acta Appl. Math., vol. 39, pp. 361–378, 1995. https://doi.org/10.1007/bf00994643.Suche in Google Scholar

[18] Z. J. Zhou, J. Z. Fu, and Z. B. Li, “Maple packages for computing Hirota’s bilinear equation and multisoliton solutions of nonlinear evolution equations,” Appl. Math. Comput., vol. 217, pp. 92–104, 2010. https://doi.org/10.1016/j.amc.2010.05.012.Suche in Google Scholar

[19] W. X. Ma and E. G. Fan, “Linear superposition principle applying to Hirota bilinear equations,” Comput. Math. Appl., vol. 61, pp. 950–959, 2011. https://doi.org/10.1016/j.camwa.2010.12.043.Suche in Google Scholar

[20] W. X. Ma, Y. Zhang, Y. N. Tang, and J. Y. Tu, “Hirota bilinear equations with linear subspaces of solutions,” Appl. Math. Comput., vol. 218, pp. 7174–7183, 2012. https://doi.org/10.1016/j.amc.2011.12.085.Suche in Google Scholar

[21] R. Hirota and J. Satsuma, “N-soliton solutions of model equations for shallow water waves,” J. Phys. Soc. Jpn., vol. 40, pp. 611–612, 1976. https://doi.org/10.1143/jpsj.40.611.Suche in Google Scholar

[22] A. M. Wazwaz, “A fifth-order Korteweg–de Vries equation for shallow water with surface tension: multiple soliton solutions,” Acta Phys. Pol. A, vol. 130, pp. 679–682, 2016. https://doi.org/10.12693/aphyspola.130.679.Suche in Google Scholar

[23] A. Ramani, “Inverse scattering, ordinary differential equations of Painlevé-type, and Hirota’s bilinear formalism,” Ann. NY Acad. Sci., vol. 373, pp. 54–67, 1981. https://doi.org/10.1111/j.1749-6632.1981.tb51131.x.Suche in Google Scholar

[24] Ma, W. X., Generalized bilinear differential equations, Stud. Nonlinear Sci., vol. 2, pp. 140–144, 2011.Suche in Google Scholar

[25] W. X. Ma, “Trilinear equations, Bell polynomials, and resonant solutions,” Front. Math. China, vol. 8, pp. 1139–1156, 2013. https://doi.org/10.1007/s11464-013-0319-5.Suche in Google Scholar

Received: 2020-09-19
Accepted: 2021-01-16
Published Online: 2021-03-01
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2020-0214/html?lang=de
Button zum nach oben scrollen