Home Limit cycles in a tritrophic food chain model with general functional responses
Article
Licensed
Unlicensed Requires Authentication

Limit cycles in a tritrophic food chain model with general functional responses

  • Gamaliel Blé EMAIL logo and Iván Loreto-Hernández
Published/Copyright: March 3, 2021

Abstract

The conditions to have a stable limit cycle by an Andronov–Hopf bifurcation in a tritrophic model are given. A generalized logistic growth function for the prey is considered, and a general family of functional responses, including the Holling type, are taken for the predators. Some results obtained in previous works for tritrophic models, which consider logistic growth in the prey and Holling functional responses, are generalized.

2010 MSC: 37G15; 37C75; 92D25

Corresponding author: Gamaliel Blé, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Km. 1, Carretera Cunduacán-Jalpa de Méndez, Tabasco, c.p. 86690, Mexico, E-mail:

Acknowledgment

We thank the referees for their valuable comments, which allowed us to improve this work.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

A The first Lyapunov coefficient

The first Lyapunov coefficient of the differential system (2) at the equilibrium point p is

1 ( p , c 20 ) = σ 1 ( σ 2 σ 3 σ 4 + σ 5 σ 6 ) σ 7 σ 8 σ 9 σ 10 ,

where

σ 1 = f 2 ( y 0 ) 3 f 2 ( y 0 ) y 0 f 2 ( y 0 ) 9 / 2 , σ 2 = δ 1 x 0 4 y 0 f 1 ( x 0 ) f 1 ( x 0 ) f 1 ( x 0 ) h ( x 0 ) 2 d 1 + y 0 f 1 ( x 0 ) f 2 ( y 0 ) y 0 f 2 ( y 0 ) 2 , σ 3 = δ 2 y 0 f 1 ( x 0 ) 4 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) 2 y 0 f 2 ( y 0 ) f 2 ( y 0 ) , σ 4 = x 0 2 f 1 ( x 0 ) 2 h ( x 0 ) f 2 ( y 0 ) y 0 f 2 ( y 0 ) 2 4 d 1 δ 4 f 2 ( y 0 ) 6 + δ 3 y 0 9 f 1 ( x 0 ) 2 f 2 ( y 0 ) 7 + 2 δ 5 y 0 2 f 2 ( y 0 ) 5 f 2 ( y 0 ) δ 6 y 0 5 f 2 ( y 0 ) 2 f 1 ( x 0 ) f 2 ( y 0 ) 4 + x 0 2 f 1 ( x 0 ) 2 h ( x 0 ) f 2 ( y 0 ) y 0 f 2 ( y 0 ) 2 δ 7 y 0 6 f 2 ( y 0 ) f 1 ( x 0 ) f 2 ( y 0 ) 5 + δ 8 y 0 2 f 2 ( y 0 ) 4 f 2 ( y 0 ) 2 + δ 9 y 0 4 f 2 ( y 0 ) 3 f 2 ( y 0 ) 3 , σ 5 = δ 10 x 0 4 f 1 ( x 0 ) 2 h ( x 0 ) 2 d 1 + y 0 f 1 ( x 0 ) f 2 ( y 0 ) y 0 f 2 ( y 0 ) 3 , σ 6 = x 0 2 y 0 f 1 ( x 0 ) 3 f 2 ( y 0 ) h ( x 0 ) y 0 f 2 ( y 0 ) f 2 ( y 0 ) 4 d 1 δ 13 f 2 ( y 0 ) 5 + δ 11 y 0 7 f 1 ( x 0 ) 2 f 2 ( y 0 ) 5 + δ 12 y 0 3 f 2 ( y 0 ) 3 f 1 ( x 0 ) f 2 ( y 0 ) 2 + x 0 2 y 0 f 1 ( x 0 ) 3 f 2 ( y 0 ) h ( x 0 ) y 0 f 2 ( y 0 ) f 2 ( y 0 ) δ 14 y 0 5 f 2 ( y 0 ) f 1 ( x 0 ) f 2 ( y 0 ) 4 + 2 δ 15 y 0 f 2 ( y 0 ) 4 f 2 ( y 0 ) + δ 16 y 0 4 f 2 ( y 0 ) 2 f 1 ( x 0 ) f 2 ( y 0 ) 3 , σ 7 = 4 x 0 4 f 1 ( x 0 ) 3 / 2 f 2 ( y 0 ) h ( x 0 ) 2 d 1 y 0 f 2 ( y 0 ) + y 0 3 f 1 ( x 0 ) f 2 ( y 0 ) , σ 8 = d 1 f 2 ( y 0 ) 3 + y 0 4 f 1 ( x 0 ) f 2 ( y 0 ) 3 + y 0 3 f 2 ( y 0 ) f 1 ( x 0 ) f 2 ( y 0 ) 2 + y 0 2 f 2 ( y 0 ) 2 f 1 ( x 0 ) f 2 ( y 0 ) , σ 9 = 4 d 1 f 2 ( y 0 ) 3 + y 0 4 f 1 ( x 0 ) f 2 ( y 0 ) 3 y 0 3 f 2 ( y 0 ) f 1 ( x 0 ) f 2 ( y 0 ) 2 4 y 0 2 f 2 ( y 0 ) 2 f 1 ( x 0 ) f 2 ( y 0 ) , σ 10 = y 0 f 1 ( x 0 ) d 1 + y 0 f 1 ( x 0 ) d 1 y 0 3 f 2 ( y 0 ) f 1 ( x 0 ) f 2 ( y 0 ) 2 + y 0 5 f 1 ( x 0 ) 2 f 2 ( y 0 ) 3 y 0 f 2 ( y 0 ) 4 f 2 ( y 0 ) + f 2 ( y 0 ) 5 + f 1 ( x 0 ) 2 f 2 ( y 0 ) 3 f 2 ( y 0 ) y 0 f 2 ( y 0 ) 2 , δ 1 = f 2 ( y 0 ) f 2 ( y 0 ) η 1 2 f 2 ( y 0 ) 2 d 1 f 2 ( y 0 ) + y 0 2 f 1 ( x 0 ) f 2 ( y 0 ) η 2 , δ 2 = y 0 4 f 2 ( y 0 ) 2 f 1 ( x 0 ) f 2 ( y 0 ) 3 4 y 0 f 1 ( x 0 ) d 1 + y 0 3 f 2 ( y 0 ) 3 f 1 ( x 0 ) f 2 ( y 0 ) 2 7 d 1 + 2 y 0 f 1 ( x 0 ) + 2 y 0 2 f 2 ( y 0 ) 4 f 1 ( x 0 ) f 2 ( y 0 ) 3 d 1 + y 0 f 1 ( x 0 ) + 4 d 1 f 2 ( y 0 ) 5 2 d 1 + y 0 f 1 ( x 0 ) + y 0 7 f 1 ( x 0 ) 2 f 2 ( y 0 ) 5 + y 0 6 f 2 ( y 0 ) f 1 ( x 0 ) 2 f 2 ( y 0 ) 4 , δ 3 = x 0 2 f 1 ( x 0 ) 2 h ( x 0 ) + 2 f 1 ( x 0 ) 2 x 0 h ( x 0 ) + 2 h ( x 0 ) + x 0 2 f 1 ( 3 ) ( x 0 ) f 1 ( x 0 ) h ( x 0 ) , δ 4 = d 1 x 0 2 y 0 f 1 ( x 0 ) 2 f 2 ( y 0 ) h ( x 0 ) + 2 d 1 y 0 f 1 ( x 0 ) 2 y 0 f 2 ( y 0 ) + 3 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) + d 1 f 1 ( x 0 ) 2 d 1 y 0 f 2 ( y 0 ) + f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) + x 0 2 y 0 f 1 ( 3 ) ( x 0 ) f 2 ( y 0 ) h ( x 0 ) + 2 y 0 2 f 1 ( x 0 ) 3 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) , δ 5 = 2 d 1 2 x 0 2 f 1 ( x 0 ) 2 f 2 ( y 0 ) h ( x 0 ) + d 1 y 0 f 1 ( x 0 ) 3 3 y 0 f 2 ( y 0 ) + 13 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) + d 1 f 1 ( x 0 ) 2 d 1 3 y 0 f 2 ( y 0 ) + f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) + 4 x 0 2 y 0 f 1 ( 3 ) ( x 0 ) f 2 ( y 0 ) h ( x 0 ) 6 d 1 x 0 2 y 0 f 1 ( x 0 ) f 1 ( x 0 ) 2 f 2 ( y 0 ) h ( x 0 ) + 4 y 0 2 f 1 ( x 0 ) 4 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) , δ 6 = f 1 ( x 0 ) f 2 ( y 0 ) h ( x 0 ) 10 d 1 2 + x 0 2 y 0 d 1 f 1 ( 3 ) ( x 0 ) 7 y 0 f 1 ( x 0 ) 2 + 5 d 1 2 x 0 h ( x 0 ) + y 0 f 1 ( x 0 ) 2 d 1 f 2 ( y 0 ) 5 y 0 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) + 5 x 0 2 y 0 f 1 ( 3 ) ( x 0 ) f 2 ( y 0 ) h ( x 0 ) 3 d 1 x 0 2 y 0 f 1 ( x 0 ) 2 f 2 ( y 0 ) h ( x 0 ) + y 0 2 f 1 ( x 0 ) 3 4 f 2 ( y 0 ) 5 y 0 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) , δ 7 = f 1 ( x 0 ) f 2 ( y 0 ) h ( x 0 ) 2 d 1 2 + x 0 2 y 0 d 1 f 1 ( 3 ) ( x 0 ) + y 0 f 1 ( x 0 ) 2 + d 1 2 x 0 h ( x 0 ) + y 0 f 1 ( x 0 ) 2 d 1 y 0 f 2 ( y 0 ) + 2 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) + x 0 2 y 0 f 1 ( 3 ) ( x 0 ) f 2 ( y 0 ) h ( x 0 ) + d 1 x 0 2 y 0 f 1 ( x 0 ) 2 f 2 ( y 0 ) h ( x 0 ) + y 0 2 f 1 ( x 0 ) 3 y 0 f 2 ( y 0 ) + 7 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) , δ 8 = 6 d 1 2 x 0 2 y 0 f 1 ( x 0 ) 2 f 2 ( y 0 ) h ( x 0 ) d 1 f 1 ( x 0 ) f 2 ( y 0 ) η 3 + y 0 f 1 ( x 0 ) 2 η 4 + y 0 2 f 1 ( x 0 ) 3 d 1 13 y 0 f 2 ( y 0 ) 15 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) + 4 x 0 2 y 0 f 1 ( 3 ) ( x 0 ) f 2 ( y 0 ) h ( x 0 ) + 2 y 0 3 f 1 ( x 0 ) 4 y 0 f 2 ( y 0 ) f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) , δ 9 = 2 d 1 2 x 0 2 f 1 ( x 0 ) 2 f 2 ( y 0 ) h ( x 0 ) f 1 ( x 0 ) 2 η 5 + 13 d 1 x 0 2 y 0 f 1 ( x 0 ) f 1 ( x 0 ) 2 f 2 ( y 0 ) h ( x 0 ) + y 0 f 1 ( x 0 ) 3 d 1 y 0 f 2 ( y 0 ) 22 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) + x 0 2 y 0 f 1 ( 3 ) ( x 0 ) f 2 ( y 0 ) h ( x 0 ) + y 0 2 f 1 ( x 0 ) 4 2 y 0 f 2 ( y 0 ) + f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) , δ 10 = y 0 6 f 2 ( y 0 ) f 1 ( x 0 ) f 2 ( y 0 ) 6 2 f 2 ( y 0 ) d 1 2 + y 0 f 1 ( x 0 ) d 1 7 y 0 f 1 ( x 0 ) + y 0 3 f 1 ( x 0 ) 2 f 2 ( y 0 ) + 8 d 1 2 f 2 ( y 0 ) 7 d 1 f 2 ( y 0 ) + f 1 ( x 0 ) 2 y 0 f 2 ( y 0 ) + f 2 ( y 0 ) + 2 y 0 8 f 1 ( x 0 ) 2 f 2 ( y 0 ) 8 d 1 + 2 y 0 f 1 ( x 0 ) + 2 d 1 y 0 2 f 2 ( y 0 ) 6 f 1 ( x 0 ) f 2 ( y 0 ) 5 d 1 f 2 ( y 0 ) + 4 f 1 ( x 0 ) 3 y 0 f 2 ( y 0 ) + 4 f 2 ( y 0 ) + η 6 y 0 3 f 2 ( y 0 ) 4 f 1 ( x 0 ) f 2 ( y 0 ) 2 + η 9 y 0 6 f 2 ( y 0 ) 2 f 1 ( x 0 ) f 2 ( y 0 ) 4 + η 7 y 0 3 f 2 ( y 0 ) 3 f 2 ( y 0 ) 3 + η 8 y 0 f 2 ( y 0 ) 5 f 2 ( y 0 ) , δ 11 = 2 f 1 ( x 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) + x 0 h ( 3 ) ( x 0 ) f 1 ( x 0 ) + 3 f 1 ( x 0 ) h ( x 0 ) , δ 12 = 5 d 1 x 0 h ( 3 ) ( x 0 ) f 1 ( x 0 ) + h ( x 0 ) 2 x 0 f 1 ( x 0 ) 9 d 1 + 4 y 0 f 1 ( x 0 ) 15 d 1 f 1 ( x 0 ) + 4 f 1 ( x 0 ) h ( x 0 ) 9 d 1 + 4 y 0 f 1 ( x 0 ) , δ 13 = d 1 x 0 h ( 3 ) ( x 0 ) f 1 ( x 0 ) + h ( x 0 ) x 0 f 1 ( x 0 ) 3 d 1 + y 0 f 1 ( x 0 ) 3 d 1 f 1 ( x 0 ) + 2 f 1 ( x 0 ) h ( x 0 ) 3 d 1 + y 0 f 1 ( x 0 ) , δ 14 = h ( x 0 ) x 0 f 1 ( x 0 ) d 1 y 0 f 1 ( x 0 ) + 3 y 0 f 1 ( x 0 ) 2 + 2 f 1 ( x 0 ) h ( x 0 ) d 1 y 0 f 1 ( x 0 ) + x 0 y 0 h ( 3 ) ( x 0 ) f 1 ( x 0 ) 2 , δ 15 = 2 d 1 x 0 y 0 h ( 3 ) ( x 0 ) f 1 ( x 0 ) 2 + h ( x 0 ) x 0 f 1 ( x 0 ) 5 d 1 + y 0 f 1 ( x 0 ) d 1 + 2 y 0 f 1 ( x 0 ) 6 d 1 y 0 f 1 ( x 0 ) 2 + 2 f 1 ( x 0 ) h ( x 0 ) 5 d 1 + y 0 f 1 ( x 0 ) d 1 + 2 y 0 f 1 ( x 0 ) , δ 16 = x 0 h ( 3 ) ( x 0 ) f 1 ( x 0 ) d 1 4 y 0 f 1 ( x 0 ) + h ( x 0 ) 3 f 1 ( x 0 ) d 1 4 y 0 f 1 ( x 0 ) + x 0 f 1 ( x 0 ) d 1 + 11 y 0 f 1 ( x 0 ) + 2 f 1 ( x 0 ) h ( x 0 ) d 1 + 11 y 0 f 1 ( x 0 ) , η 1 = 8 d 1 2 f 2 ( y 0 ) 5 + y 0 5 f 2 ( y 0 ) f 1 ( x 0 ) f 2 ( y 0 ) 4 2 y 0 f 1 ( x 0 ) d 1 + y 0 4 f 2 ( y 0 ) 2 f 1 ( x 0 ) f 2 ( y 0 ) 3 6 d 1 + 11 y 0 f 1 ( x 0 ) + y 0 3 f 2 ( y 0 ) 3 f 1 ( x 0 ) f 2 ( y 0 ) 2 19 d 1 + 4 y 0 f 1 ( x 0 ) + 2 d 1 y 0 f 2 ( y 0 ) 4 f 2 ( y 0 ) 5 d 1 + 6 y 0 f 1 ( x 0 ) + y 0 7 f 1 ( x 0 ) 2 f 2 ( y 0 ) 5 , η 2 = y 0 2 f 2 ( y 0 ) 2 f 2 ( y 0 ) 2 2 d 1 + 5 y 0 f 1 ( x 0 ) + y 0 f 2 ( y 0 ) 3 f 2 ( y 0 ) 2 d 1 + 5 y 0 f 1 ( x 0 ) 2 f 2 ( y 0 ) 4 d 1 + 4 y 0 f 1 ( x 0 ) + y 0 5 f 1 ( x 0 ) f 2 ( y 0 ) 4 y 0 4 f 2 ( y 0 ) f 1 ( x 0 ) f 2 ( y 0 ) 3 , η 3 = h ( x 0 ) 20 d 1 2 + x 0 2 y 0 4 d 1 f 1 ( 3 ) ( x 0 ) + 3 y 0 f 1 ( x 0 ) 2 + 10 d 1 2 x 0 h ( x 0 ) , η 4 = f 2 ( y 0 ) h ( x 0 ) x 0 2 y 0 d 1 f 1 ( 3 ) ( x 0 ) 8 y 0 f 1 ( x 0 ) 2 50 d 1 2 25 d 1 2 x 0 h ( x 0 ) + 11 d 1 2 y 0 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) , η 5 = f 2 ( y 0 ) h ( x 0 ) 6 d 1 2 + x 0 2 y 0 9 d 1 f 1 ( 3 ) ( x 0 ) y 0 f 1 ( x 0 ) 2 + 3 d 1 2 x 0 h ( x 0 ) + d 1 2 y 0 f 2 ( y 0 ) x 0 h ( x 0 ) + 2 h ( x 0 ) , η 6 = 2 f 2 ( y 0 ) 2 d 1 2 y 0 f 1 ( x 0 ) 13 d 1 + 17 y 0 f 1 ( x 0 ) + 2 y 0 2 f 2 ( y 0 ) 2 d 1 + y 0 f 1 ( x 0 ) 2 y 0 f 1 ( x 0 ) d 1 + y 0 f 2 ( y 0 ) f 2 ( y 0 ) y 0 f 1 ( x 0 ) 14 y 0 f 1 ( x 0 ) 27 d 1 5 d 1 2 4 y 0 2 f 2 ( 3 ) ( y 0 ) f 1 ( x 0 ) d 1 + y 0 f 1 ( x 0 ) , η 7 = y 0 2 f 1 ( x 0 ) f 2 ( y 0 ) y 0 2 f 2 ( 3 ) ( y 0 ) f 1 ( x 0 ) d 1 + y 0 f 1 ( x 0 ) f 2 ( y 0 ) 7 d 1 2 + y 0 f 1 ( x 0 ) 7 d 1 + 22 y 0 f 1 ( x 0 ) + 2 f 2 ( y 0 ) 2 d 1 3 + y 0 f 1 ( x 0 ) d 1 2 3 y 0 f 1 ( x 0 ) y 0 f 1 ( x 0 ) 5 d 1 + 3 y 0 4 f 1 ( x 0 ) 2 f 2 ( y 0 ) 2 d 1 + y 0 f 1 ( x 0 ) , η 8 = 2 f 2 ( y 0 ) 2 2 d 1 3 + y 0 f 1 ( x 0 ) 10 d 1 2 + y 0 f 1 ( x 0 ) 17 d 1 12 y 0 f 1 ( x 0 ) + y 0 f 2 ( y 0 ) f 2 ( y 0 ) y 0 f 1 ( x 0 ) 4 y 0 f 1 ( x 0 ) 3 d 1 + 2 y 0 f 1 ( x 0 ) 17 d 1 2 10 d 1 3 4 d 1 y 0 2 f 2 ( 3 ) ( y 0 ) f 1 ( x 0 ) d 1 + y 0 f 1 ( x 0 ) + 6 d 1 y 0 3 f 1 ( x 0 ) f 2 ( y 0 ) 2 d 1 + y 0 f 1 ( x 0 ) , η 9 = d 1 2 f 2 ( y 0 ) f 2 ( y 0 ) + d 1 f 1 ( x 0 ) 3 y 0 2 f 2 ( y 0 ) 2 12 f 2 ( y 0 ) 2 + y 0 2 f 2 ( 3 ) ( y 0 ) f 2 ( y 0 ) + y 0 f 1 ( x 0 ) 2 3 y 0 2 f 2 ( y 0 ) 2 + 24 f 2 ( y 0 ) 2 + y 0 f 2 ( y 0 ) y 0 f 2 ( 3 ) ( y 0 ) + f 2 ( y 0 ) .

References

[1] J. D. Murray, Mathematical Biology I: An Introduction, 3rd ed., New York, Springer, 2002.10.1007/b98868Search in Google Scholar

[2] H. I. Freedman and S. Ruan, “Hopf bifurcation in three-species food chain models with group defense,” Math. Biosci., vol. 111, pp. 73–87, 1992. https://doi.org/10.1016/0025-5564(92)90079-c.Search in Google Scholar

[3] J. P. Francoise and J. Llibre, “Analytical study of a triple Hopf bifurcation in a tritrophic food chain model,” Appl. Math. Comput., vol. 217, pp. 7146–7154, 2011. https://doi.org/10.1016/j.amc.2011.01.109.Search in Google Scholar

[4] G. Blé, V. Castellanos, and I. Loreto–Hernández, “Andronov–Hopf and Bautin Bifurcation in a tritrophic food chain model with Holling functional response types IV and II,” Electron. J. Qual. Theor. Differ. Equ., vol. 78, pp. 1–27, 2018. https://doi.org/10.14232/ejqtde.2018.1.78.Search in Google Scholar

[5] V. Castellanos, F. E. Castillo-Santos, M. A. Dela-Rosa, and I. Loreto–Hernández, “Hopf and Bautin bifurcation in a tritrophic food chain model with Holling functional response types III and IV,” Int. J. Bifurcat. Chaos., vol. 28, no. 3, p. 24, 2018. https://doi.org/10.1142/s0218127418500359.Search in Google Scholar

[6] H. Molla, M. S. Rahman, and S. Sarwardi, “Dynamics of a predator–prey model with Holling type II functional response incorporating a prey refuge depending on Both the species,” Int. J. Nonl. Sci. Num. Simul., vol. 20, no. 1, pp. 89–104, 2018. https://doi.org/10.1515/ijnsns-2017-0224.Search in Google Scholar

[7] R. Sigal, “Algorithms for the Routh–Hurwitz stability test,” Math. Comput. Model., vol. 13, no. 8, pp. 69–77, 1990. https://doi.org/10.1016/0895-7177(90)90072-u.Search in Google Scholar

[8] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd ed., New York, Springer-Verlag, 2004.10.1007/978-1-4757-3978-7Search in Google Scholar

[9] Y. A. Kuznetsov, “Andronov–Hopf bifurcation,” Scholarpedia, vol. 1, no. 10, p. 1858, 2006. https://doi.org/10.4249/scholarpedia.1858.Search in Google Scholar

[10] J. E. Marsden and McCracken, The Hopf Bifurcation and its Applications, New York, Springer-Verlag, 1976.10.1007/978-1-4612-6374-6Search in Google Scholar

[11] L. Perko, Differential Equations and Dynamical Systems, 3rd ed., New York, Springer-Verlag, 2001.10.1007/978-1-4613-0003-8Search in Google Scholar

[12] J. L. Rocha and A. Taha, “Allee’s effect bifurcation in generalized logistic maps,” Int. J. Bifurcat. Chaos, vol. 29, no. 3, p. 19, 2019. https://doi.org/10.1142/S0218127419500391.Search in Google Scholar

[13] C. S. Holling, “Some characteristics of simple types of predation and parasitism,” Can. Entomol., vol. 91, pp. 385–398, 1959. https://doi.org/10.4039/ent91385-7.Search in Google Scholar

[14] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, New York, Marcel Dekker, 1980.Search in Google Scholar

[15] L. A. Real, “The kinetics of functional response,” Am. Nat., vol. 111, no. 978, pp. 289–300, 1977. https://doi.org/10.1086/283161.Search in Google Scholar

[16] J. H. P. Dawes and M. O. Souza, “A derivation of Holling’s type I, II and III functional responses in predator–prey systems,” J. Theor. Biol., vol. 327, pp. 11–22, 2013. https://doi.org/10.1016/j.jtbi.2013.02.017.Search in Google Scholar PubMed

[17] G. Blé, V. Castellanos, and M. A. Dela-Rosa, “Coexistence of species in a tritrophic food chain model with Holling functional response type IV,” Math. Methods Appl. Sci., vol. 16, pp. 6683–6701, 2018. https://doi.org/10.1002/mma.5184.Search in Google Scholar

[18] M. L. Rosenzweig, “Paradox of enrichment: destabilization of exploitation ecosystems in ecological time,” Science, vol. 171, no. 3969, pp. 385–387, 1971. https://doi.org/10.1126/science.171.3969.385.Search in Google Scholar PubMed

[19] W. T. Jamieson and J. Reis, “Global behavior for the classical Nicholson–Bailey model,” J. Math. Anal. Appl., vol. 461, pp. 492–499, 2018. https://doi.org/10.1016/j.jmaa.2017.12.071.Search in Google Scholar

Received: 2019-06-19
Revised: 2020-11-06
Accepted: 2021-02-07
Published Online: 2021-03-03
Published in Print: 2022-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Articles
  3. Dynamics of synthetic drug transmission models
  4. Collision-induced amplitude dynamics of pulses in linear waveguides with the generic nonlinear loss
  5. Global dissipativity of non-autonomous BAM neural networks with mixed time-varying delays and discontinuous activations
  6. On the inverse problem for nonlinear strongly damped wave equations with discrete random noise
  7. A second-order nonlocal regularized variational model for multiframe image super-resolution
  8. Algebro-geometric integration of a modified shallow wave hierarchy
  9. Singularity analysis of a 7-DOF spatial hybrid manipulator for medical surgery
  10. Propagation of diffusing pollutant by kinetic flux-vector splitting method
  11. Limit cycles in a tritrophic food chain model with general functional responses
  12. Local and parallel stabilized finite element methods based on full domain decomposition for the stationary Stokes equations
  13. Stress concentration effect on deflection and stress fields of a master leaf spring through domain decomposition and geometry updation technique
  14. Electrostatically actuated double walled piezoelectric nanoshell subjected to nonlinear van der Waals effect: nonclassical vibrations and stability analysis
  15. Traveling wave solutions of the generalized Rosenau–Kawahara-RLW equation via the sine–cosine method and a generalized auxiliary equation method
  16. A predictor–corrector compact finite difference scheme for a nonlinear partial integro-differential equation
  17. Parameter inference with analytical propagators for stochastic models of autoregulated gene expression
  18. DCSK performance analysis of a chaos-based communication using a newly designed chaotic system
  19. On successive linearization method for differential equations with nonlinear conditions
  20. Comparison of different time discretization schemes for solving the Allen–Cahn equation
  21. The homoclinic breather wave solution, rational wave and n-soliton solution to a nonlinear differential equation
  22. Diversity of interaction phenomenon, cross-kink wave, and the bright-dark solitons for the (3 + 1)-dimensional Kadomtsev–Petviashvili–Boussinesq-like equation
Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2019-0175/html
Scroll to top button