Home The Functional Variable Method to Find New Exact Solutions of the Nonlinear Evolution Equations with Dual-Power-Law Nonlinearity
Article
Licensed
Unlicensed Requires Authentication

The Functional Variable Method to Find New Exact Solutions of the Nonlinear Evolution Equations with Dual-Power-Law Nonlinearity

  • Hadi Rezazadeh , Javad Vahidi , Asim Zafar and Ahmet Bekir ORCID logo EMAIL logo
Published/Copyright: May 9, 2020

Abstract

In this work, we established new travelling wave solutions for some nonlinear evolution equations with dual-power-law nonlinearity namely the Zakharov–Kuznetsov equation, the Benjamin–Bona–Mahony equation and the Korteweg–de Vries equation. The functional variable method was used to construct travelling wave solutions of nonlinear evolution equations with dual-power-law nonlinearity. The travelling wave solutions are expressed by generalized hyperbolic functions and the rational functions. This method presents a wider applicability for handling nonlinear wave equations.

References

[1] M. Eslami, F. S. Khodadad, F. Nazari and H. Rezazadeh, The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative, Opt. Quantum Electron. 49(12) (2017), 391.10.1007/s11082-017-1224-zSearch in Google Scholar

[2] H. Aminikhah, A. R. Sheikhani and H. Rezazadeh, Exact solutions for the fractional differential equations by using the first integral method, Nonlinear Eng. 4(1) (2015), 15–22.10.1515/nleng-2014-0018Search in Google Scholar

[3] M. Mirzazadeh and M. Eslami, Exact solutions of the Kudryashov-Sinelshchikov equation and nonlinear telegraph equation via the first integral method, Nonlinear Anal. Modell. Control. 17(4) (2012), 481–488.10.15388/NA.17.4.14052Search in Google Scholar

[4] M. Eslami, M. Mirzazadeh and A. Neirameh, New exact wave solutions for Hirota equation, Pramana. 84(1) (2015), 3–8.10.1007/s12043-014-0837-zSearch in Google Scholar

[5] Z.-Y. Zhang, J. Zhong, S. S. Dou, J. Liu, D. Peng and T. Gao, First integral method and exact solutions to nonlinear partial differential equations arising in mathematical physics, Rom. Rep. Phys. 65(4) (2013), 1155–1169.Search in Google Scholar

[6] N. Taghizadeh, M. Mirzazadeh, M. Rahimian and M. Akbari, Application of the simplest equation method to some time-fractional partial differential equations, Ain Shams Eng. J. 4(4) (2013), 897–902.10.1016/j.asej.2013.01.006Search in Google Scholar

[7] K. U. Tariq, M. Younis, H. Rezazadeh, S. T. R. Rizvi and M. S. Osman, Optical solitons with quadratic–cubic nonlinearity and fractional temporal evolution, Mod. Phys. Lett. B. 32(26) (2018), 1850317.10.1142/S0217984918503177Search in Google Scholar

[8] M. Mirzazadeh, A. H. Arnous, M. F. Mahmood, E. Zerrad and A. Biswas, Soliton solutions to resonant nonlinear Schrödinger’s equation with time-dependent coefficients by trial solution approach, Nonlinear Dyn. 81(1–2) (2015), 277–282.10.1007/s11071-015-1989-1Search in Google Scholar

[9] H. Rezazadeh, M. S. Osman, M. Eslami, M. Ekici and M. Belic, Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity, Optik. 164 (2018), 84–92.10.1016/j.ijleo.2018.03.006Search in Google Scholar

[10] M. Eslami, Trial solution technique to chiral nonlinear Schrodinger’s equation in (1+2)-dimensions, Nonlinear Dyn. 85(2) (2016), 813–816.10.1007/s11071-016-2724-2Search in Google Scholar

[11] M. Eslami and M. Mirzazadeh, Exact solutions of modified Zakharov–Kuznetsov equation by the homogeneous balance method, Ain Shams Eng. J. 5(1) (2014), 221–225.10.1016/j.asej.2013.06.005Search in Google Scholar

[12] H. Rezazadeh, A. Korkmaz, M. Eslami, J. Vahidi and R. Asghari, Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method, Opt. Quantum Electron. 50(3) (2018), 150.10.1007/s11082-018-1416-1Search in Google Scholar

[13] H. Rezazadeh, J. Manafian, F. S. Khodadad and F. Nazari, Traveling wave solutions for density-dependent conformable fractional diffusion–reaction equation by the first integral method and the improved tan(φ(ξ)/2)-expansion, Opt. Quantum Electron. 51 (2018), 121.10.1007/s11082-018-1388-1Search in Google Scholar

[14] R. A. Talarposhti, S. E. Ghasemi, Y. Rahmani and D. D. Ganji, Application of Exp-function method to wave solutions of the Sine-Gordon and Ostrovsky equations, Acta Math. Appl. Sinica, English Series. 32(3) (2016), 571–578.10.1007/s10255-016-0571-zSearch in Google Scholar

[15] M. Eslami and A. Neirameh, New exact solutions for higher order nonlinear Schrödinger equation in optical fibers, Opt. Quantum Electron. 50(1) (2018), 47.10.1007/s11082-017-1310-2Search in Google Scholar

[16] A. Korkmaz, O. E. Hepson, K. Hosseini, H. Rezazadeh and M. Eslami, Sine-Gordon expansion method for exact solutions to conformable time fractional equations in RLW-class, J. King Saud Univ. Sci. (2018). doi:10.1016/j.jksus.2018.08.013.Search in Google Scholar

[17] H. Rezazadeh, New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik. 167 (2018), 218–227.10.1016/j.ijleo.2018.04.026Search in Google Scholar

[18] H. Rezazadeh, H. Tariq, M. Eslami, M. Mirzazadeh and Q. Zhou, New exact solutions of nonlinear conformable time-fractional Phi-4 equation, Chin. J. Phys. 56(6) (2018), 2805–2816.10.1016/j.cjph.2018.08.001Search in Google Scholar

[19] V. S. Kumar, H. Rezazadeh, M. Eslami, F. Izadi and M. S. Osman, Jacobi elliptic function expansion method for solving KdV equation with conformable derivative and dual-power law nonlinearity, Int. J. Appl. Comput. Math. 5 (2019), 127.10.1007/s40819-019-0710-3Search in Google Scholar

[20] Z.-Y. Hang, X.-Y. Gan, D.-M. Yu, Y.-H. Zhang and X.-P. Li, A note on exact traveling wave solutions of the perturbed nonlinear Schrodingers equation with Kerr law nonlinearity, Commun. Theor. Phys. 57 (2012), 764–770.10.1088/0253-6102/57/5/05Search in Google Scholar

[21] Z.-Y. Zhang, J. Zhong, S. S. Dou, J. Liu, D. Peng and T. Gao, Abundant exact traveling wave solutions for the Klein-Gordon-Zakharov equations via the tanh-coth expansion method and and Jacobi elliptic function expansion method, Rom. J. Phys. 58(7-8) (2013), 749–765.Search in Google Scholar

[22] Z.-Y. Zhang, Jacobi elliptic function expansion method for the mKdV-ZK and the Hirota equations, Rom. J. Phys. 60(9–10) (2015), 1384–1394.Search in Google Scholar

[23] A. Biswas, M. Mirzazadeh and M. Eslami, Dispersive dark optical soliton with Schödinger-Hirota equation by (G′/G)-expansion approach in power law medium, Optik. 125(16) (2014), 4215–4218.10.1016/j.ijleo.2014.03.039Search in Google Scholar

[24] M. Eslami, A. Neyrame and M. Ebrahimi, Explicit solutions of nonlinear (2+1)-dimensional dispersive long wave equation, J. King Saud Univ. Sci. 24(1) (2012), 69–71.10.1016/j.jksus.2010.08.003Search in Google Scholar

[25] M. Mirzazadeh, M. Eslami and A. Biswas, Soliton solutions of the generalized Klein-Gordon equation by using (G’/G)-expansion method, Comput. Appl. Math. 33(3) (2014), 831–839.10.1007/s40314-013-0098-3Search in Google Scholar

[26] J. G. Liu, M. S. Osman, W. H. Zhu, L. Zhou and G.-P. Ai, Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers, Appl. Phys. B. 125 (2019), 175.10.1007/s00340-019-7287-8Search in Google Scholar

[27] X.-J. Miao and Z.-Y. Zhang, The modified (G′/G)-expansion method and traveling wave solutions of nonlinear the perturbed nonlinear Schrodingers equation with Kerr law nonlinearity, Commun. Nonlinear Sci. Numer. Simul. 16(11) (2011), 4259–4267.10.1016/j.cnsns.2011.03.032Search in Google Scholar

[28] Z.-Y. Zhang, J. Huang, J. Zhong, S. S. Dou, J. Liu, D. Peng and T. Gao, The extended (G′/G)-expansion method and travelling wave solutions for the perturbed nonlinear Schrodingers equation with Kerr law nonlinearity, Pramana. 82(6) (2014), 1011–1029.10.1007/s12043-014-0747-0Search in Google Scholar

[29] Z.-Y. Zhang and J. Wu, Generalized (G′/G)-expansion method and exact traveling wave solutions of the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity in optical fiber materials, Opt. Quantum Electron. 49 (2017), 52.10.1007/s11082-016-0884-4Search in Google Scholar

[30] Z.-Y. Zhang, Z.-H. Liu, X.-J. Miao and Y.-Z. Chen, Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrodingers equation with Kerr law nonlinearity, Phys. Lett. A. 375 (2011), 1275–1280.10.1016/j.physleta.2010.11.070Search in Google Scholar

[31] Z.-Y. Zhang, X.-Y. Gan and -M.-M. Yu, Bifurcation behavior of the traveling wave solutions of nonlinear the perturbed nonlinear Schrodingers equation with Kerr law nonlinearity, Zeitschrift fur Naturforschung A. 66a (2011), 721–727.10.5560/zna.2011-0041Search in Google Scholar

[32] Z.-Y. Zhang, F.-L. Xia and X.-P. Li, Bifurcation analysis and the travelling wave solutions of the Klein-Gordon-Zakharov equations, Pramana. 80(1) (2013), 41–59.10.1007/s12043-012-0357-7Search in Google Scholar

[33] Z.-Y. Zhang, Z.-H. Liu, X.-J. Miao and Y.-Z. Chen, New exact solutions to the perturbed nonlinear Schrodingers equation with Kerr law nonlinearity, Appl. Math. Comput. 216 (2010), 3064–3072.10.1016/j.amc.2010.04.026Search in Google Scholar

[34] Z.-Y. Zhang, New exact traveling wave solutions for the nonlinear Klein-Gordon equation, Turkish J. Phys. 32 (2008), 235–240.Search in Google Scholar

[35] Z.-Y. Zhang, Y.-X. Li, Z.-H. Liu and X.-J. Miao, New exact solutions to the perturbed nonlinear Schrodingers equation with Kerr law nonlinearity via modified trigonometric function series method, Commun. Nonlinear Sci. Numer. Simul. 16(8) (2011), 3097–3106.10.1016/j.cnsns.2010.12.010Search in Google Scholar

[36] Z.-Y. Zhang, Y.-H. Zhang, X.-Y. Gan and D.-M. Yu, A note on exact traveling wave solutions for the Klein-Gordon-Zakharov equations, Zeitschrift fur Naturforschung. 67a (2012), 167–172.10.5560/zna.2012-0007Search in Google Scholar

[37] M. Eslami, Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations, Appl. Math. Comput. 285 (2016), 141–148.10.1016/j.amc.2016.03.032Search in Google Scholar

[38] M. Mirzazadeh, M. Eslami and A. Biswas, Dispersive optical solitons by Kudryashov’s method, Opt. Int. J. Light Electron Opt. 125(23) (2014), 6874–6880.10.1016/j.ijleo.2014.02.044Search in Google Scholar

[39] D. Lu, K. U. Tariq, M. S. Osman, D. Baleanu, M. Younis and M. M. A. Khater, New analytical wave structures for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications, Results Phys. 14 (2019), 102491.10.1016/j.rinp.2019.102491Search in Google Scholar

[40] M. S. Osman, D. Lu, M. M. A. Khater and R. A. M. Attia, Complex wave structures for abundant solutions related to the complex Ginzburg–Landau model, Optik. 192 (2019), 162927.10.1016/j.ijleo.2019.06.027Search in Google Scholar

[41] H. I. Abdel-Gawad and M. S. Osman, On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients, J. Adv. Res. 6(4) (2015), 593–599.10.1016/j.jare.2014.02.004Search in Google Scholar PubMed PubMed Central

[42] Z.-Y. Zhang, Exact traveling wave solutions of the perturbed Klein-Gordon equation with quadratic nonlinearity in (1+1)-dimension, Part I-without local inductance and dissipation effect, Turk. J. Phys. 37 (2013), 259–267.10.3906/fiz-1205-13Search in Google Scholar

[43] B. Ghanbari, M. S. Osman and D. Baleanu, Generalized exponential rational function method for extended Zakharov–Kuzetsov equation with conformable derivative, Mod. Phys. Lett. A. 34(20) (2019), 1950155.10.1142/S0217732319501554Search in Google Scholar

[44] J.-G. Liu, M. Eslami, H. Rezazadeh and M. Mirzazadeh, Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation, Nonlinear Dyn. 95(2) (2019), 1027–1033.10.1007/s11071-018-4612-4Search in Google Scholar

[45] M. S. Osman and A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Math. Methods Appl. Sci. (in press).10.1002/mma.5721Search in Google Scholar

[46] M. S. Osman and H. I. Abdel-Gawad, Multi-wave solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equations with variable coefficients, Eur. Phys. J. Plus. 130 (2015), 215.10.1140/epjp/i2015-15215-1Search in Google Scholar

[47] H. I. Abdel-Gawad and M. S. Osman, On the variational approach for analyzing the stability of solutions of evolution equations, Kyungpook Math. J. 53(4) (2013), 661–680.10.5666/KMJ.2013.53.4.680Search in Google Scholar

[48] Z.-Y. Zhang, J. Zhong, S. S. Dou, J. Liu, D. Peng and T. Gao, A new method to construct traveling wave solutions for the Klein-Gordon Zakharov equations, Rom. Journ. Phys. 58(7-8) (2013), 766–777.Search in Google Scholar

[49] A. Zerarka, S. Ouamane and A. Attaf, On the functional variable method for finding exact solutions to a class of wave equations, Appl. Math. Comput. 217(7) (2010), 2897–2904.10.1016/j.amc.2010.08.070Search in Google Scholar

[50] A. Zerarka and S. Ouamane, Application of the functional variable method to a class of nonlinear wave equations, World J. Modell. Simul. 6(2) (2010), 150–160.Search in Google Scholar

[51] M. Eslami and M. Mirzazadeh, Functional variable method to study nonlinear evolution equations, Open Eng. 3(3) (2013), 451–458.10.2478/s13531-013-0104-ySearch in Google Scholar

[52] W. Djoudi and A. Zerarka, Exact structures for the KdV–mKdV equation with variable coefficients via the functional variable method, Optik. 127(20) (2016), 9621–9626.10.1016/j.ijleo.2016.07.045Search in Google Scholar

[53] A. Nazarzadeh, M. Eslami and M. Mirzazadeh, Exact solutions of some nonlinear partial differential equations using functional variable method, Pramana. 81(2) (2013), 225–236.10.1007/s12043-013-0565-9Search in Google Scholar

[54] A. C. Çevikel, A. Bekir, M. Akar and S. San, A procedure to construct exact solutions of nonlinear evolution equations, Pramana J. Phys. 79(3) (2012), 337–344.10.1007/s12043-012-0326-1Search in Google Scholar

[55] H. Aminikhah, A. H. R. Sheikhani and H. Rezazadeh, Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method, Boletim da Sociedade Paranaense de Matemática. 34(2) (2015), 213–229.10.5269/bspm.v34i2.25501Search in Google Scholar

[56] M. Eslami, H. Rezazadeh, M. Rezazadeh and S. S. Mosavi, Exact solutions to the space–time fractional Schrödinger–Hirota equation and the space-time modified KDV-Zakharov-Kuznetsov equation, Opt. Quantum Electron. 49(8) (2017), 279.10.1007/s11082-017-1112-6Search in Google Scholar

[57] H. Aminikhah, A. R. Sheikhani and H. Rezazadeh, Exact solutions of some nonlinear systems of partial differential equations by using the functional variable method, Mathematica. 56(2) (2016), 103–116.Search in Google Scholar

[58] A. Bekir, Ö. Güner, E. Aksoy and Y. Pandır (2015). Functional variable method for the nonlinear fractional differential equations. AIP Conference Proceedings, 1648, 73000110.1063/1.4912955Search in Google Scholar

[59] N. Hongsit, M. A. Allen and G. Rowlands, Growth rate of transverse instabilities of solitary pulse solutions to a family of modified Zakharov-Kuznetsov equations, Phys. Lett. A. 372(14) (2008), 2420–2422.10.1016/j.physleta.2007.12.005Search in Google Scholar

[60] A. Biswas and E. Zerrad, 1-soliton solution of the Zakharov-Kuznetsov equation with dual-power law nonlinearity, Commun. Nonlinear Sci. Numer. Simul. 14(9) (2009), 3574–3577.10.1016/j.cnsns.2008.10.004Search in Google Scholar

[61] A. Bekir, Application of the (G′/G)-expansion method for nonlinear evolution equations, Phys. Lett. A. 372(19) (2008), 3400–3406.10.1016/j.physleta.2008.01.057Search in Google Scholar

[62] G. Ebadi, Solitons and other solutions to Zakharov-Kuznetsov equation with dual-power law nonlinearity, Int. J. Nonlinear Sci. 16(3) (2013), 248–254.Search in Google Scholar

[63] X. L. Yang, J. S. Tang and Z. Qiao, Traveling wave solutions of the generalized BBM equation, Pacific J. Appl. Math. 1(3) (2009), 221–234.Search in Google Scholar

[64] A. El Achab and A. Bekir, Travelling wave solutions to the generalized Benjamin-Bona-Mahony (BBM) equation using the first integral method, Int. J. Nonlinear Sci. 19(1) (2015), 40–46.Search in Google Scholar

[65] A. Biswas, 1-Soliton solution of Benjamin–Bona–Mahoney equation with dual-power law nonlinearity, Commun. Nonlinear Sci. Numer. Simul. 15(10) (2010), 2744–2746.10.1016/j.cnsns.2009.10.023Search in Google Scholar

[66] X. Liu, L. Tian and Y. Wu, Exact solutions of the generalized Benjamin-Bona-Mahony equation, Math. Prob. Eng. 2010 (2010), 796398.10.1155/2010/796398Search in Google Scholar

[67] C. M. Khalique, Solutions and conservation laws of Benjamin–Bona–Mahony–Peregrine equation with power-law and dual power-law nonlinearities, Pramana. 80(3) (2013), 413–427.10.1007/s12043-012-0489-9Search in Google Scholar

[68] D. B. Belobo and T. Das, Solitary and Jacobi elliptic wave solutions of the generalized Benjamin-Bona-Mahony equation, Commun. Nonlinear Sci. Numer. Simul. 48 (2017), 270–277.10.1016/j.cnsns.2017.01.001Search in Google Scholar

[69] W. Zhang, Q. Chang and B. Jiang, Explicit exact solitary-wave solutions for compound KdV-type and compound KdV–Burgers-type equations with nonlinear terms of any order, Chaos, Solitons Fractals. 13(2) (2002), 311–319.10.1016/S0960-0779(00)00272-1Search in Google Scholar

[70] M. Postolache, Y. Gurefe, A. Sonmezoglu, M. Ekici and E. Misirli, Extended trial equation method and applications to some nonlinear problems, UPB Sci. Bull. 76(2) (2014), 1223–7027.Search in Google Scholar

[71] Y. Gurefe, A. Sonmezoglu and E. Misirli, Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics, Pramana. 77(6) (2011), 1023–1029.10.1007/s12043-011-0201-5Search in Google Scholar

[72] B. Li, Y. Chen and H. Zhang, Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order, Phys. Lett. A. 305(6) (2002), 377–382.10.1016/S0375-9601(02)01515-3Search in Google Scholar

[73] H. Bulut, T. A. Sulaiman and H. M. Baskonus, New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity, Opt. Quantum Electron. 48(12) (2016), 564.10.1007/s11082-016-0831-4Search in Google Scholar

[74] B. Li, Y. Chen and H. Zhang, Explicit exact solutions for compound KdV-type and compound KdV–Burgers-type equations with nonlinear terms of any order, Chaos, Solitons Fractals. 15(4) (2003), 647–654.10.1016/S0960-0779(02)00152-2Search in Google Scholar

[75] M. Wadati, Wave propagation in nonlinear lattice. I, J. Phys. Soc. Jpn. 38(3) (1975), 673–680.10.1143/JPSJ.38.673Search in Google Scholar

[76] M. Wadati, Wave propagation in nonlinear lattice. II, J. Phys. Soc. Jpn. 38(3) (1975), 681–686.10.1143/JPSJ.38.681Search in Google Scholar

[77] B. Dey, Domain wall solutions of KdV like equations with higher order nonlinearity, J. Phys. A: Math. Gen. 19(1) (1986), L9.10.1088/0305-4470/19/1/003Search in Google Scholar

[78] M. W. Coffey, On series expansions giving closed-form solutions of Korteweg–de Vries-like equations, SIAM J. Appl. Math. 50(6) (1990), 1580–1592.10.1137/0150093Search in Google Scholar

[79] Z. I. Al-Muhiameed and E. A. B. Abdel-Salam, Generalized hyperbolic function solution to a class of nonlinear Schrödinger-type equations, J. Appl. Math. 2012 (2012), 265348.10.1155/2012/265348Search in Google Scholar

[80] E. Yomba, Generalized hyperbolic functions to find soliton-like solutions for a system of coupled nonlinear Schrödinger equations, Phys. Lett. A. 372(10) (2008), 1612–1618.10.1016/j.physleta.2007.10.015Search in Google Scholar

Received: 2019-02-21
Accepted: 2019-10-21
Published Online: 2020-05-09
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Original Research Articles
  3. Validation of SPH-FE Numerical Modeling of the Interaction between a High-Speed Water Jet and a PMMA Target by CEL Model and Experimental Study
  4. Dynamical Analysis of Fractional Order Model for Computer Virus Propagation with Kill Signals
  5. The Functional Variable Method to Find New Exact Solutions of the Nonlinear Evolution Equations with Dual-Power-Law Nonlinearity
  6. Mathematical Study of a Class of Epidemiological Models with Multiple Infectious Stages
  7. Brownian Motion on Cantor Sets
  8. Characteristics of Abundant Lumps and Interaction Solutions in the (4+1)-Dimensional Nonlinear Partial Differential Equation
  9. Analysis of a Non-integer Order Model for the Coinfection of HIV and HSV-2
  10. Bifurcation Analysis of an Electro-Statically Actuated Nano-beam Based on the Nonlocal Theory considering Centrifugal Forces
  11. Unsteady Self-similar Flow over an Impulsively Started Shrinking Sheet: Flow Augmentation with No Separation
  12. Existence, Uniqueness and Stability of Implicit Switched Coupled Fractional Differential Equations of ψ-Hilfer Type
  13. Dynamical Study of Competition Cournot-like Duopoly Games Incorporating Fractional Order Derivatives and Seasonal Influences
  14. A Short Note on the Determinant of a Sylvester–Kac Type Matrix
  15. Modeling the Impact of Rain on Population Exposed to Air Pollution
  16. Lump and Lump–Kink Soliton Solutions of an Extended Boiti–Leon–Manna–Pempinelli Equation
  17. Analysis of a Convective-Radiative Continuously Moving Fin with Temperature-Dependent Thermal Conductivity
  18. Constrained Optimal Control of A Fractionally Damped Elastic Beam
Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2019-0064/html
Scroll to top button