Home Non-linear Frequency Response and Stability Analysis of Piezoelectric Nanoresonator Subjected to Electrostatic Excitation
Article
Licensed
Unlicensed Requires Authentication

Non-linear Frequency Response and Stability Analysis of Piezoelectric Nanoresonator Subjected to Electrostatic Excitation

  • Sayyid H. Hashemi Kachapi , Morteza Dardel EMAIL logo , Hamidreza Mohamadi daniali and Alireza Fathi
Published/Copyright: April 11, 2019

Abstract

The effects of surface energy on the non-linear frequency response and stability analysis of piezoelectric cylindrical nano-shell as piezoelectric nanoresonator are investigated in the current paper using Gurtin–Murdoch surface elasticity and von Karman–Donnell’s theory. The nanoresonator is embedded in visco-Pasternak medium and electrostatic excitation. The governing equations and boundary conditions are derived using Hamilton’s principle and also the assumed mode method is used for changing the partial differential equations into ordinary differential equations. Complex averaging method combined with arc-length continuation is used to achieve an approximate solution for the steady-state vibrations of the system. The validation of the mentioned system is achieved with excellent agreements by comparison with numerical results. The parametric studies such as the effects of geometrical and material properties, different boundary conditions, the ratio of length to radius L/R for different values of the voltages VDC and VAC, the gap width of the nanoresonator b/L, the effect of the voltages VDC and VAC and also the effect of piezoelectric voltage Vp are conducted on the non-linear frequency response and stability analysis of the piezoelectric nanoresonator.

MSC 2010: 65P40; 65P30; 37M10; 37M20; 34C28; 34C15
  1. Conflict of interest: The authors report no conflict of interest.

Appendix A

A
(54)AijN,BijN,DijN=hNhNCijN1,z,z2dz,Aijp,Bijp,Dijp=hNhN+hpCijp1,z,z2dz,
(55)Nxp,Nθp=hNhN+hpe31p,e32pEˉzpdz+e31ps,e32psEˉzp,
(56)Mxp,Mθp=hNhN+hpe31p,e32pEˉzpzdz+e31ps,e32psEˉzphN+hp,
(57)A11=A22=λs1+2μs1+λs2+2μs2,A12=A21=τ0s1+λs1+τ0s2+λs2,A66=μs1τ0s12+μs2τ0s22,
(58)B11=B22=λs2+2μs2hN+hpλs1+2μs1hN,B12=B21=τ0s2+λs2hN+hpτ0s1+λs1hN,B66=μs2τ0s22hN+hpμs1τ0s12hN,
(59)D11=D22=λs2+2μs2hN+hp2+λs1+2μs1hN2,D12=D21=τ0s2+λs2hN+hp2+τ0s1+λs1hN2,D66=μs2τ0s22hN+hp2+μs1τ0s12hN2,
(60)F11N=hNhNυN1υNτ0s2τ0s12+τ0s2+τ0s1z2hN+hpdz,F11p=hNhN+hpυp1υpτ0s2τ0s12+τ0s2+τ0s1z2hN+hpdz,
(61)J11N=hNhNυN1υNρs1ρs22ρs1+ρs2z2hN+hpdz,J11p=hNhN+hpυp1υpρs1ρs22ρs1+ρs2z2hN+hpdz,
(62)E11N=hNhNυN1υNτ0s2τ0s1z2+τ0s2+τ0s1z22hN+hpdz,E11p=hNhN+hpυp1υpτ0s2τ0s1z2+τ0s2+τ0s1z22hN+hpdz,
(63)G11N=hNhNυN1υNρs1ρs2z2ρs1+ρs2z22hN+hpdz,G11p=hNhN+hpυp1υpρs1ρs2z2ρs1+ρs2z22hN+hpdz,

Appendix B

α1=1m3Aˉ11, α2=m02m3Aˉ66, α3=m0m3Aˉ12+Aˉ21, α4=2m0m3Aˉ66, α5=m0m3Aˉ12+Aˉ21,
α6=12m1m32Aˉ11τˉ0s1τˉ0s2, α7=m0m22m3Aˉ12+Aˉ21, α8=2m0m2m3Aˉ66, α9=m02m3Aˉ22,
α10=m02m22m32Aˉ22τˉ0s1τˉ0s2,α11=m22m3Aˉ12+Aˉ21, α12=m02m32Aˉ22τˉ0s1τˉ0s2,
α13=1m3Aˉ66, α14=2m2m3Aˉ66,α15=m02m3Aˉ22τˉ0s1τˉ0s2, α16=14m12m3Aˉ11τˉ0s1τˉ0s2,
α17=m02m224m3Aˉ22τˉ0s1τˉ0s2, α18=m224m34Aˉ66+Aˉ12+Aˉ21, α19=m22m3Aˉ12+Aˉ21,
α20=m02m2m3Aˉ22τˉ0s1τˉ0s2, α21=4m0m2m3Bˉ66,α22=m0m2m3Fˉ11Bˉ12Bˉ21,
α23=1m1m3Fˉ112Bˉ11, α24=m2m3Fˉ11Bˉ12Bˉ21,α25=4m2m3Bˉ66,
α26=m02m2m3Fˉ112Bˉ22,α27=m222m3Fˉ11Bˉ12Bˉ21,α28=m2m3Fˉ11Bˉ12Bˉ21,
α29=m222m3Fˉ11Bˉ12Bˉ21, α30=12m12m3Fˉ112Bˉ11+τˉ0s21+m4τˉ0s1,
α31=m02m222m3Fˉ112Bˉ22+τˉ0s21+m4τˉ0s1,α32=4m22m3Bˉ66,
 α33=m02m2m3Fˉ112Bˉ22+τˉ0s21+m4τˉ0s1,α34=1m12m3Dˉ11Eˉ11,
α35=m02m22m3Dˉ22Eˉ11,α36=4m22m3Dˉ66,α37=m22m3Dˉ12+Dˉ212Eˉ11,
α38=m0m1m3τˉ0s1+τˉ0s2Nˉθp,α39=m1m3τˉ0s1+τˉ0s2Nˉxp,α40=m0m1m3τˉ0s1+τˉ0s2Nˉθp,
α41=12m3τˉ0s1+τˉ0s2Nˉxp,α42=m022m3τˉ0s1+τˉ0s2Nˉθp, α43=1m3Mˉxp+τˉ0s1τˉ0s21+m4,
α44=m02m3Mˉθp+τˉ0s1τˉ0s21+m4,α45=12m12m3Gˉ11,α46=m222m3Gˉ11,α47=12m1m3Jˉ11,
α48=m22m3Jˉ11,α49=m22m3Jˉ11,α50=14m12m3Jˉ11,α51=m224m3Jˉ11,

Appendix C

Muu=χeχidξϑfϑjdθ
Muw=12α47χeβodξϑfψldθ
Kuu=α1χeχidξϑfϑjdθ+α2χeχidξϑfϑjdθ
Kuv=12α3χeϕkdξϑfαldθ+12α4χeϕkdξϑfαldθ
Kuw=12α5χeβodξϑfψldθ+12α21χeβ0dξϑfψldθ+12α22χeβodξϑfψldθ+12α23χeβ0dξϑfψldθ
NLuw=12α6χeβ0βtdξϑfψpψvdθ+12α7χeβoβtdξϑfψpψvdθ+12α8χeβ0βtdξϑfψpψvdθ
Fˉup=12α39χedξϑidθ
Mvv=ϕqϕkdξafaldθ
Mvw=12α48ϕqβodξαfψldθ
Kvu=12α3ϕqχidξαfϑldθ+12α4ϕqχidξαfϑldθ
Kvv=α9ϕqϕkdξαfαldθ+α13ϕqϕkdξαfαldθ
Kvw=12α12ϕqβodξαfψldθ+12α24ϕqβ0dξαfψldθ+12α25ϕqβ0dξαfψldθ+12α26ϕqβodξαfψldθ
NLvw=12α10ϕqβoβtdξαgψpψvdθ+12α11ϕqβ0βtdξαgψpψvdθ+12α14ϕqβ0βtdξαgψpψvdθ
Fˉvp=12α40ϕqdξαfdθ
Mww=βrβodξψsψpdθ+12α45βrβodξψsψpdθ+12α46βrβodξψsψpdθ+12α49βrβodξψsψpdθ
Cww=Cˉwβrβodξψsψpdθ
Kwu=12α5βrχidξψsϑjdθ+12α21βrχidξψpϑjdθ+12α22βrχidξψsϑjdθ+12α23βrχidξψsϑjdθ
Kwv=12α12βrϕkdξψsαldθ+12α24βrϕkdξψsαldθ+12α25βrϕkdξψsαldθ+12α26βrϕkdξψsαldθ
Kww=α15βrβodξψsψpdθ+12a28βrβ0dξψsψpdθ+12a28βrβodξψsψpdθ+12a33βrβodξψsψpdθ+12a33βrβodξψsψpdθ+a34βrβ0dξψsψpdθ+α35βoβrdξψsψpdθ+α36βrβodξψsψpdθ+12α37βrβodξψsψpdθ+12α37βrβodξψsψpdθ+α41βrβodξψsψpdθ+α42βrβodξψsψpdθkˉwβrβodξψsψpdθ+kˉpβrβ0dξψsψpdθ+kˉpm02βrβodξψsψpdθFˉe2Keww
Keww=βrβodξψsψpdθ
NLwu=α6βrβoχidξψsψpϑjdθ+α7βrβoχidξψsψpϑjdθ+12α8βrβoχidξψsψpϑjdθ+12α8βrβoχidξψsψpϑjdθ
NLwv=α10βrβoϕkdξψsψpαldθ+α11βrβoϕkdξψsψpαldθ+12α14βrβoϕkdξψsψpαldθ+12α14βrβoϕkdξψsψpαldθ
(NL)w2w=12α19βrβoβtdξψsψpψvdθ+α19βrβoβtdξψsψpψvdθ+12α20βrβoβtdξψsψpψvdθ+α20βrβoβtdξψsψpψvdθ+12α27βrβoβtdξψsψpψvdθ+α27βrβoβtdξψsψpψvdθ+12α29βrββtdξψsψpψvdθ+α29βrβoβtdξψsψpψvdθ+12α30βrβoβtdξψsψpψvdθ+α30βrβoβtdξψsψpψvdθ+12α31βrβoβtdξψsψpψvdθ+α31βrβoβtdξψsψpψvdθ+12α32βrβoβtdξψsψpψvdθ+12α32ββoβtdξψsψpψvdθ+12α32βrβoβtdξψsψpψvdθF¯e3(NL2e)ww
NL2eww=βrβoβtdξψsψpψvdθ
NLw3w=2α16βrβoβtβadξψsψpψvψbdθ+2α17βrβoβtβadξψsψpψvψbdθ+α18βrβoβtβadξψsψpψvψbdθ+α18βrβoβtβadξψsψpψvψbdθFˉe4NL3eww
NL3eww=βrβoβtβadξψsψpψvψbdθ
Fˉwp=12α38βrdξψsdθ+12α43βrdξψsdθ+12α44βrdξψsdθ
Fˉ1=βrdξψsdθ, Fˉe1=FˉeFˉ1, FˉeDC=FˉeVˉDC2, Fˉwe=Cˉ1FˉeDCFˉ1, 
 Fˉe2=Cˉ2FˉeDC, Fˉe3=Cˉ3FˉeDC, Fˉe4=Cˉ4FˉeDC,

Appendix D

MˆuwMˆvw=KuuKuvKvuKvv1MuwMvwKˆuwKˆvw=KuuKuvKvuKvv1KuwKvw,NLˆuwNLˆvw=KuuKuvKvuKvv1NLuwNLvwFˆupFˆvp=KuuKuvKvuKvv1FˉupFˉvp,
FˆwupFˆwvp=KwuKwvFˆupFˆvpMˆuwuMˆvwv=KwuKwvMˆuwMˆvw,KˆuwuKˆvwv=KwuKwvKˆuwKˆvwNLˆuwuNLˆvwv=KwuKwvNLˆuwNLˆvw,

References

[1] N. Jalili, Piezoelectric-based vibration control: from macro to micro/nano scale systems, New York, Springer, 2010.10.1007/978-1-4419-0070-8Search in Google Scholar

[2] P. S. Waggoner and H. G. Craighead, Micro-and nanomechanical sensors for environmental, chemical, and biological detection, Lab. Chip. 7(10) (2007), 1238–1255.10.1039/b707401hSearch in Google Scholar

[3] A. Manbachi and R. S. C. Cobbold, Development and application of piezoelectric materials for ultrasound generation and detection, Ultrasound. 11(4) (2011), 187–196.10.1258/ult.2011.011027Search in Google Scholar

[4] R. D. Mindlin and H. F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Ration Mech. Anal. 11(1) (1962), 415–448.10.1007/BF00253946Search in Google Scholar

[5] A. C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10(1) (1972), 1–16.10.1016/0020-7225(72)90070-5Search in Google Scholar

[6] R. D. Mindlin and N. N. Eshel, On first strain-gradient theories in linear elasticity, Int. J. Solids Struct. 4(1) (1968), 109–124.10.1016/0020-7683(68)90036-XSearch in Google Scholar

[7] R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct. 1(4) (1965), 417–438.10.1016/0020-7683(65)90006-5Search in Google Scholar

[8] M. E. Gurtin and A. I. Murdoch, A continuum theory of elastic material surface, Arch. Ration Mech. Anal. 57(4) (1975), 291–323.10.1007/BF00261375Search in Google Scholar

[9] M. E. Gurtin and A. I. Murdoch, Surface stress in solids, Int. J. Solids Struct. 14(6) (1978), 431–440.10.1016/0020-7683(78)90008-2Search in Google Scholar

[10] Y. X. Zhen, S. L. Wen and Y. Tang, Free vibration analysis of viscoelastic nanotubes under longitudinal magnetic field based on nonlocal strain gradient Timoshenko beam model, Phys. E. 105 (2019), 116–124.10.1016/j.physe.2018.09.005Search in Google Scholar

[11] A. Apuzzo, R. Barretta, S. A. Faghidian, R. Luciano and F. Marotti de Sciarra, Free vibrations of elastic beams by modified nonlocal strain gradient theory, Int. J. Eng. Sci. 133 (2018), 99–108.10.1016/j.ijengsci.2018.09.002Search in Google Scholar

[12] G. L. She, F. G. Yuan, Y. R. Ren, H. B. Liu and W. S. Xiao, Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory, Compos. Struct. 203 (2018), 614–623.10.1016/j.compstruct.2018.07.063Search in Google Scholar

[13] S. Sahmani and M. Mohammadi Aghdam, Small scale effects on the large amplitude nonlinear vibrations of multilayer functionally graded composite nanobeams reinforced with graphene-nanoplatelets, Int. J. Nanosci. Nanotechnol. 14 (2018), 207–227.Search in Google Scholar

[14] L. Lu, G. Xingming and Z. Jianzhong, A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects, Appl. Math. Model. 68 (2019), 583–602.10.1016/j.apm.2018.11.023Search in Google Scholar

[15] A. V. Krysko, J. Awrejcewicz, M. V. Zhigalov, S. P. Pavlov and V. A. Krysko, Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 1. Governing equations and static analysis of flexible beams, Int. J. Non Linear Mech. 93 (2017), 96–105.10.1016/j.ijnonlinmec.2017.03.005Search in Google Scholar

[16] A. V. Krysko, J. Awrejcewicz, M. V. Zhigalov, S. P. Pavlov and V. A. Krysko, Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 2. Chaotic dynamics of flexible beams, Int. J. Non Linear Mech. 93 (2017), 106–121.10.1016/j.ijnonlinmec.2017.03.006Search in Google Scholar

[17] J. Awrejcewicz, A. V. Krysko, S. P. Pavlov, M. V. Zhigalov and V. A. Krysko, Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness, Mech. Syst. Signal. Proc. Mech. Syst. Signal Proc. 93 (2017), 415–430.10.1016/j.ymssp.2017.01.047Search in Google Scholar

[18] J. Awrejcewicz, A. V. Krysko, S. P. Pavlov, M. V. Zhigalov and V. A. Krysko, Stability of the size-dependent and functionally graded curvilinear Timoshenko beams, J. Comput. Nonlinear Dyn. 12(4) (2017), 041018.10.1115/1.4035668Search in Google Scholar

[19] S. Mehrdad Pourkiaee, S. E. Khadem and M. Shahgholi, Nonlinear vibration and stability analysis of an electrically actuated piezoelectric nanobeam considering surface effects and intermolecular interactions, J. Vib. Control. (2015), doi: 10.1177/1077546315603270.Search in Google Scholar

[20] S. Mehrdad Pourkiaee, S. E. Khadem and M. Shahgholi, Parametric resonances of an electrically actuated piezoelectric nanobeam resonator considering surface effects and intermolecular interactions, Nonlinear Dyn., doi: 10.1007/s11071-016-2618-3.Search in Google Scholar

[21] H. Rouhi, R. Ansari and M. Darvizeh, Exact solution for the vibrations of cylindrical nanoshells considering surface energy effect, J. Ultrafine Grained Nanostruct. Mater. 48(2) (2015), 113–124.Search in Google Scholar

[22] X. Q. Fang, C. S. Zhu, J. X. Liu and X. L. Liu, Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures, Phys B: Phys. Condens. Matter. (2017), doi: 10.1016/j.physb.2017.10.038.Search in Google Scholar

[23] C. S. Zhu, X. Q. Fang and J. X. Liu, Surface energy effect on buckling behavior of the functionally graded nano-shell covered with piezoelectric nano-layers under torque, Int. J. Mech. Sci. 133 (2017), 662–673.10.1016/j.ijmecsci.2017.09.036Search in Google Scholar

[24] A. Ghorbanpour Arani, R. Kolahchi and M. Hashemian, Nonlocal surface piezoelasticity theory for dynamic stability of double-walled boron nitride nanotube conveying viscose fluid based on different theories, Proc. IMechE Part C: J. Mech. Eng. Sci. (2014), doi: 10.1177/0954406214527270.Search in Google Scholar

[25] M. S. Sari and A. Al-Qaisia, Nonlinear natural frequencies and primary resonance of euler-bernoulli beam with initial deflection using nonlocal elasticity theory, Jordan J. Mech. Ind. Eng. 10(3) (2016), 161–169.Search in Google Scholar

[26] F. Ebrahimi and M. R. Barati, Buckling analysis of nonlocal embedded shear deformable functionally graded piezoelectric nanoscale beams, Jordan J. Mech. Ind. Eng. 2; 47 11(2) (2017), 79–95.Search in Google Scholar

[27] A. Fereidoon, E. Andalib and A. Mirafzal, Nonlinear vibration of viscoelastic embedded-DWCNTs integrated with piezoelectric layers-conveying viscous fluid considering surface effects, Phys. E: Low-Dimensional Syst. Nanostruct. 81 (2016), 205–218.10.1016/j.physe.2016.03.020Search in Google Scholar

[28] S. Sahmani, M. M. Aghdam and M. Bahrami, Nonlinear buckling and postbuckling behavior of cylindrical shear deformable nanoshells subjected to radial compression including surface free energy effects, Acta Mech. Solida Sinica. 30(2) (2017), 209–222.10.1016/j.camss.2017.02.002Search in Google Scholar

[29] S. Sahmani, M. Mohammadi Aghdam and A. Akbarzadeh, Surface stress effect on nonlinear instability of imperfect piezoelectric nanoshells under combination of hydrostatic pressure and lateral electric field, AUT J. Mech. Eng. 2 (2018), 177–190.Search in Google Scholar

[30] S. Sahmani and M. Mohammadi Aghdam, Boundary layer modeling of nonlinear axial buckling behavior of functionally graded cylindrical nanoshells based on the surface elasticity theory, Iranian J. Sci. Technol. Trans. Mech. Eng. 42 (2018), 229–245.10.1007/s40997-017-0092-2Search in Google Scholar

[31] A. Sarafraz, S. Sahmani and M. Mohammadi Aghdam, Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects, Appl. Math. Model. 66 (2019), 195–226.10.1016/j.apm.2018.09.013Search in Google Scholar

[32] M. Amabili, Nonlinear vibrations and stability of shells and plates, New York, Cambridge University Press, 2008.10.1017/CBO9780511619694Search in Google Scholar

[33] H. Farokhi, M. P. Païdoussis and A. Misra, A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators, J. Sound Vib. 378 (2016), 56–75.10.1016/j.jsv.2016.05.008Search in Google Scholar

[34] L. L. Ke, Y. S. Wang and J. N. Reddy, Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions, Compos. Struct. 116 (2014), 626–636.10.1016/j.compstruct.2014.05.048Search in Google Scholar

[35] A. I. Manevitch and L. I. Manevitch, Themechanics of nonlinear systems with internal resonance, London, Imperial College Press, 2005.10.1142/p368Search in Google Scholar

[36] M. Parseh, M. Dardel, M. H. Ghasemi and M. H. Pashaei, Steady state dynamics of a non-linear beam coupled to a non-linear energy sink, Int. J. Non Linear Mech. 79 (2016), 48–65.10.1016/j.ijnonlinmec.2015.11.005Search in Google Scholar

Received: 2018-09-10
Accepted: 2019-03-11
Published Online: 2019-04-11
Published in Print: 2019-08-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0269/html
Scroll to top button