Startseite An Input Shaping Control Scheme with Application on Overhead Cranes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An Input Shaping Control Scheme with Application on Overhead Cranes

  • Khalid Alghanim , Abdullah Mohammed ORCID logo EMAIL logo und Masood Taheri Andani
Veröffentlicht/Copyright: 11. April 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new optimization technique is developed to generate a step-input acceleration function for an input shaping harmonic system. This approach is integrated into an overhead crane model for a rest-to-rest maneuver with standard and nonstandard maneuver settings. The proposed method guarantees the satisfaction of the system constraints and desired final conditions, while it minimizes the system sensitivity to crane cable-length variations. The minimal system sensitivity is achieved through an optimization algorithm that provides zero vibration and a minimum integral of system sensitivity over a continuous range of crane cable length. Numerical simulations are conducted to demonstrate the feasibility of the proposed shaper in eliminating the residual vibration at the end of a programmed maneuver. Sensitivity analyses are also performed to verify the robustness of the new shaper. In comparison to the previous shapers, the new methodology is significantly less sensitive and can effectively handle different arbitrary maneuver times.

MSC 2010: 70Q05

References

[1] H. Butler, G. Honderd and J. Van Amerongen, Model reference adaptive control of a gantry crane scale model, IEEE Control Syst. 11 (1) (1991), 57–62.10.1109/37.103358Suche in Google Scholar

[2] N. Uchiyama, H. Ouyang and S. Sano, Simple rotary crane dynamics modeling and open-loop control for residual load sway suppression by only horizontal boom motion, Mechatronics 23 (8) (2013), 1223–1236.10.1016/j.mechatronics.2013.09.001Suche in Google Scholar

[3] A. Gholabi, M. Ebrahimi, G. R. Yousefi, M. Ghayour, A. Ebrahimi and H. Jali, Sensorless anti-swing control for overhead crane using voltage and current measurements, J. Vib. Control 21 (9) (2015), 1745–1756.10.1177/1077546313500367Suche in Google Scholar

[4] R. R. Orszulik and J. Shan, Vibration control using input shaping and adaptive positive position feedback, J. Guid. Control Dyn. 34 (4) (2011), 1031.10.2514/1.52287Suche in Google Scholar

[5] Eihab M. Abdel-Rahman, Ali H. Nayfeh and Ziyad N. Masoud, Dynamics and control of cranes: A review, Modal Anal. 9 (7) (2003), 863–908.10.1177/1077546303009007007Suche in Google Scholar

[6] Ning Sun, Yiming Wu, Yongchun Fang and He Chen, Nonlinear antiswing control for crane systems with double-pendulum swing effects and uncertain parameters: design and experiments, IEEE Trans Trans. Autom. Sci. Eng.15 (3) (2018), 1413–1422.10.1109/TASE.2017.2723539Suche in Google Scholar

[7] N. Sun, Y. Fang, Y. Wu and H. Chen, “Adaptive positioning and swing suppression control of underactuated cranes exhibiting double-pendulum dynamics: Theory and experimentation,” in Proceedings - 2016 31st youth academic annual conference of chinese association of automation, YAC 2016, 2017.10.1109/YAC.2016.7804870Suche in Google Scholar

[8] Ning Sun, Yongchun Fang, He Chen, Yiming Fu and Biao Lu, Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: design, analysis, and experiments, IEEE Trans. Syst. Man Cybern. Syst. 9 (2017), 1–13.10.1109/TSMC.2017.2700393Suche in Google Scholar

[9] Ning Sun, Tong Yang, He Chen, Yongchun Fang and Yuzhe Qian, Adaptive anti-swing and positioning control for 4-DOF rotary cranes subject to uncertain/unknown parameters with hardware experiments, IEEE Trans. Syst. Man Cybern. Syst. 99(2017), 1–13.10.1109/TSMC.2017.2765183Suche in Google Scholar

[10] He Chen, Yongchun Fang and Ning Sun, A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems, Nonlinear Dyn. 89 (2) (2017), 1513–1524.10.1007/s11071-017-3531-0Suche in Google Scholar

[11] Menghua Zhang, Xin Ma, Hui Chai, Xuewen Rong, Xincheng Tian and Yibin Lim, A novel online motion planning method for double-pendulum overhead cranes, Nonlinear Dyn. 85 (2) (2016), 1079–1090.10.1007/s11071-016-2745-xSuche in Google Scholar

[12] Tuan Anh Le, Soon-Geul Lee and Sang-Chan Moon, Partial feedback linearization and sliding mode techniques for 2D crane control, Trans. Inst. Meas. Control. 36 (1) (2014), 78–87.10.1177/0142331213492369Suche in Google Scholar

[13] N. C. Singer, W. P. Seering and K. A. Pasch, Shaping command inputs to minimize unwanted dynamics, Google Patents, Apr-1990.Suche in Google Scholar

[14] W. E. Singhose, N. C. Singer, S. J. Derezinski, III, B. W. Rappole, Jr and K. Pasch, Method and apparatus for minimizing unwanted dynamics in a physical system, Google Patents, Jun-1997.Suche in Google Scholar

[15] J. Vaughan, A. Yano and W. Singhose, Comparison of robust input shapers, J. Sound Vib. 315 (4) (2008), 797–815.10.1016/j.jsv.2008.02.032Suche in Google Scholar

[16] S. Moriyasu and Y. Okuyama, Surge propagation of PWM-inverter and surge voltage on the motor, IEEJ Trans. Ind. Appl. 119 (4) (1999), 508–514.10.1541/ieejias.119.508Suche in Google Scholar

[17] S. Ogasawara and H. Akagi, Modeling and damping of high-frequency leakage currents in PWM inverter-fed AC motor drive systems, IEEE Trans. Ind. Appl. 32 (5) (1996), 1105–1114.10.1109/28.536872Suche in Google Scholar

[18] A. Narang, B. K. Gupta, E. P. Dick and D. Sharma, Measurement and analysis of surge distribution in motor stator windings, IEEE Trans. Energy Convers. 4 (1) (1989), 126–134.10.1109/60.23163Suche in Google Scholar

[19] K. Alhazza and Z. Masoud, A novel wave-form command-shaper for overhead cranes, J. Eng. Res. 1 (3) (2013), 181–209.Suche in Google Scholar

[20] B. R. Murphy and I. Watanabe, Digital shaping filters for reducing machine vibration, IEEE Trans. Robot. Autom. 8 (2) (1992), 285–289.10.1109/70.134281Suche in Google Scholar

[21] J. M. Hyde and W. P. Seering, Using input command pre-shaping to suppress multiple mode vibration, in: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, 2604–2609, 1991.Suche in Google Scholar

[22] M. Robertson, K. Kozak and W. Singhose, Computational framework for digital input shapers using linear optimisation, IEE Proc.-Control Theo. Appl. 153 (3) (2006), 314–322.10.1049/ip-cta:20050045Suche in Google Scholar

[23] T. Singh, Jerk limited input shapers, Proc. Am. Control Conf. 5 (March) (2004), 4825–4830.10.23919/ACC.2004.1384077Suche in Google Scholar

[24] K. A. Alghanim, K. A. Alhazza and Z. N. Masoud, Discrete-time command profile for simultaneous travel and hoist maneuvers of overhead cranes, J. Sound Vib. 345 (2015), 47–57.10.1016/j.jsv.2015.01.042Suche in Google Scholar

[25] M. A. Lau and L. Y. Pao, Input shaping and time-optimal control of flexible structures, Automatica 39 (5) (2003), 893–900.10.1016/S0005-1098(03)00024-4Suche in Google Scholar

[26] A. Aboel-Hassan, M. Arafa and A. Nassef, Design and optimization of input shapers for liquid slosh suppression, J. Sound Vib. 320 (1–2) (2009), 1–15.10.1016/j.jsv.2008.07.015Suche in Google Scholar

[27] W. Singhose, R. Eloundou and J. Lawrence, Command generation for flexible systems by input shaping and command smoothing, J. Guid. Control. Dyn. 33 (6) (2010), 1697–1707.10.2514/1.50270Suche in Google Scholar

[28] U. H. Shah and K.-S. Hong, Input shaping control of a nuclear power plant’s fuel transport system, Nonlinear Dyn. 77 (4) (2014), 1737–1748.10.1007/s11071-014-1414-1Suche in Google Scholar

[29] U. H. Shah, K.-S. Hong and S.-H. Choi, Open-loop vibration control of an underwater system: Application to refueling machine, IEEE/ASME Trans. Mechatronics 22 (4) (2017), 1622–1632.10.1109/TMECH.2017.2706304Suche in Google Scholar

[30] K. A. Alhazza, Adjustable maneuvering time wave-form command shaping control with variable hoisting speeds, J. Vib. Control 23 (7) (2017), 1095–1105.10.1177/1077546315588881Suche in Google Scholar

[31] K. A. Alhazza, A. Al-Shehaima and Z. N. Masoud, A continuous modulated wave-form command shaping for damped overhead cranes, in Proceedings of ASME 2011 international design engineering technical conferences & computers and information in engineering conference, 2011.10.1115/DETC2011-48336Suche in Google Scholar

[32] Khaled A. Alhazza, Experimental validation on a continuous modulated wave-form command shaping applied on damped systems, in: Topics in dynamics of civil structures, Volume 4, pp. 445-451. Springer, New York, NY, 2013. doi: 10.1007/978-1-4614-6555-3_48.Suche in Google Scholar

[33] M. J. Maghsoudi, Z. Mohamed, A. R. Husain and M. O. Tokhi, An optimal performance control scheme for a 3D crane, Mech. Syst. Signal Process. 66–67 (2016), 756–768.10.1016/j.ymssp.2015.05.020Suche in Google Scholar

[34] G. Sun, M. Kleeberger and J. Liu, Complete dynamic calculation of lattice mobile crane during hoisting motion, Mech. Mach. Theory 40 (4) (2005), 447–466.10.1016/j.mechmachtheory.2004.07.014Suche in Google Scholar

[35] W. Singhose, L. Porter, M. Kenison and E. Kriikku, Effects of hoisting on the input shaping control of gantry cranes, Control Eng. Pract. 8 (10) (2000), 1159–1165.10.1016/S0967-0661(00)00054-XSuche in Google Scholar

[36] Z. N. Masoud and M. F. Daqaq, A graphical approach to input-shaping control design for container cranes with hoist, IEEE Trans. Control Syst. Technol. 14 (6) (2006), 1070–1077.10.1109/TCST.2006.883194Suche in Google Scholar

[37] Khaled A. Alhazza, Abdullah M. Hasan, Khaled A. Alghanim and Ziyad N. Masoud, An iterative learning control technique for point-to-point maneuvers applied on an overhead crane, Shock Vibr. 2014 (2014), Article ID 261509, 11 pages.doi: 10.1155/2014/261509.Suche in Google Scholar

Received: 2018-05-29
Accepted: 2019-01-12
Published Online: 2019-04-11
Published in Print: 2019-08-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0152/html
Button zum nach oben scrollen