Home Numerical Treatment of the Fractional Modeling on Susceptible-Infected-Recovered Equations with a Constant Vaccination Rate by Using GEM
Article
Licensed
Unlicensed Requires Authentication

Numerical Treatment of the Fractional Modeling on Susceptible-Infected-Recovered Equations with a Constant Vaccination Rate by Using GEM

  • M. M. Khader and M. Adel EMAIL logo
Published/Copyright: December 6, 2018

Abstract

Here, we introduce a numerical solution by using the generalized Euler method for the (Caputo sense) fractional Susceptible-Infected-Recovered (SIR) model with a constant vaccination rate. We compare the obtained numerical solutions with those solutions by using the RK4. Hence, the obtained numerical results of the SIR model show the simplicity and the efficiency of the proposed method.

References

[1] S. Das and P. K. Gupta, A mathematical model on fractional Lotka-Volterra equations, J. Theor. Bio. 277 (2011), 1–6.10.1016/j.jtbi.2011.01.034Search in Google Scholar PubMed

[2] W. M. Abd-Elhameed and Y. H. Youssri, Generalized Lucas polynomial sequence approach for fractional differential equations, Nonlinear Dyn. 89(2) (2017), 1341–1355.10.1007/s11071-017-3519-9Search in Google Scholar

[3] W. M. Abd-Elhameed and Y. H. Youssri, Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations, Comput. Appl. Math. 37(3) (2018), 2897–2921.10.1007/s40314-017-0488-zSearch in Google Scholar

[4] W. M. Abd-Elhameed and Y. H. Youssri, Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence, Iran. J. Sci. Technol. Trans. A: Sci. 12 (2017), 1–12.10.1007/s40995-017-0420-9Search in Google Scholar

[5] M. Adel and M. M. Khader, Numerical simulation for studying the optimization problem as system of fractional differential equations using GEM, Appl. Math. 8 (2017), 1761–1768.10.4236/am.2017.812126Search in Google Scholar

[6] E. H. Doha, Y. H. Youssri and M. A. Zaky, Spectral solutions for differential and integral equations with varying coefficients using classical orthogonal polynomials, Bull. Iran. Math. Soc. 8(2) (2018), 1–29.10.1007/s41980-018-0147-1Search in Google Scholar

[7] E. H. Doha, Waleed M. Abd-Elhameed, Nermeen A. Elkot and Youssri H. Youssri, Integral spectral Tchebyshev approach for solving space Riemann-Liouville and Riesz fractional advection-dispersion problems, Adv. Differ. Equ. 2017(284) (2017), 1–23.10.1186/s13662-017-1336-6Search in Google Scholar

[8] R. M. Hafez and Y. H. Youssri, Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation, Comput. Appl. Math. 37(4) (2018), 5315–5333.10.1007/s40314-018-0633-3Search in Google Scholar

[9] M. M. Khader, On the numerical solutions for the fractional diffusion equation, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 2535–2542.10.1016/j.cnsns.2010.09.007Search in Google Scholar

[10] N. Bildik and S. Deniz, A new efficient method for solving delay differential equations and a comparison with other methods, Eur. Phys. J. Plus 132(51) (2017), 1–11.10.1140/epjp/i2017-11344-9Search in Google Scholar

[11] N. Bildik and S. Deniz, Comparative study between optimal homotopy asymptotic method and perturbation-iteration technique for different types of nonlinear equations, Iran. J. Sci. Tech., Trans. A: Sci. 42(2) (2018), 647–654.10.1007/s40995-016-0039-2Search in Google Scholar

[12] S. Deniz and N. Bildik, A new analytical technique for solving Lane-Emden type equations arising in astrophysics, Bull. Belgian Math. Soc.-Simon Stevin 24(2) (2017), 305–320.10.36045/bbms/1503453712Search in Google Scholar

[13] A. S. R. Kanth and P. M. M. Kumar, Numerical method for a class of nonlinear singularly perturbed delay differential equations using parametric cubic spline, Int. J. Nonl. Sci. Numer. Simul. 19(3) (2018), 357–366.10.1515/ijnsns-2017-0126Search in Google Scholar

[14] M. M. Khader and M. Adel, Numerical solutions of fractional wave equations using an efficient class of FDM based on the Hermite formula, Adv. Differ. Equ. (2012), doi: 10.1186/s13662-015-0731-0.Search in Google Scholar

[15] R. C. Mittal and S. Dahiya, A quintic B-spline based differential quadrature method for numerical solution of Kuramoto-Sivashinsky equation, Int. J. Nonlinear Sci. Numer. Simul. 8(2) (2017), 103–114.10.1515/ijnsns-2015-0190Search in Google Scholar

[16] N. H. Sweilam, M. M. Khader and M. Adel, Numerical simulation of fractional Cable equation of spiny neuronal dendrites, J. Adv. Res. (JAR) 5 (2014), 253–259.10.1016/j.jare.2013.03.006Search in Google Scholar PubMed PubMed Central

[17] N. H. Sweilam, M. M. Khader and M. Adel, Weighted average finite difference methods for fractional reaction-subdiffusion equation, Walailak J. Sci. Tech. 11(4) (2014), 361–377.Search in Google Scholar

[18] Y. H. Youssri and W. M. Abd-Elhameed, Numerical spectral Legendre-Galerkin algorithm for solving time fractional Telegraph equation, Rom. J. Phys. 63(107) (2018), 1–16.Search in Google Scholar

[19] Y. H. Youssri and W. M. Abd-Elhameed, Spectral tau algorithm for solving a class of fractional optimal control problems via Jacobi polynomials, Int. J. Opt. Control: Theor. Appl. 8(2) (2018), 152–160.10.11121/ijocta.01.2018.00442Search in Google Scholar

[20] E. Hanert, E. E. Schumacher and E. Deleersnijder, Front dynamics in fractional-order epidemic models, J. Theor. Bio. 279 (2011), 9–16.10.1016/j.jtbi.2011.03.012Search in Google Scholar PubMed

[21] E. Hanert, Front dynamics in a two-species competition model driven by Levy flights, J. Theor. Bio. 300 (2012), 134–142.10.1016/j.jtbi.2012.01.022Search in Google Scholar PubMed

[22] R. Kumar and S. Kumar, A new fractional modelling on Susceptible-Infected-Recovered equations with constant vaccination rate, Nonlinear Eng. 3(1) (2013), 11–19.10.1515/nleng-2013-0021Search in Google Scholar

[23] Z. M. Odibat and N. T. Shawagfeh, Generalized Taylor’s formula, Appl. Math. Comput. 186 (2007), 286–293.10.1016/j.amc.2006.07.102Search in Google Scholar

[24] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl. 332 (2007), 709–726.10.1016/j.jmaa.2006.10.040Search in Google Scholar

[25] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational Engineering in Systems and Application. In: Multiconference, IMACS, IEEE-SMC, Lille, France, 2 (1996), 963–968.Search in Google Scholar

[26] A. A. M. Arafa, S. Z. Rida and M. Khalil, Fractional modeling dynamics of HIV and CD4+ T-cells during primary infection, Nonlinear Biomed. Phys. 6(1) (2012), 1–7.10.1186/1753-4631-6-1Search in Google Scholar PubMed PubMed Central

[27] M. O. Zaid and S. Momani, An algorithm for the numerical solution of differential equations of fractional order, J. Appl. Math. Inf. 26 (2008), 15–27.Search in Google Scholar

[28] S. Side, A. M. Utami, Sukarna and M. I. Pratama, Numerical solution of SIR model for transmission of tuberculosis by Runge-Kutta method, IOP Conf. Series: J. Phys.: Conf. Series 1040 (2018) 012021, doi: 10.1088/1742-6596/1040/1/012021.Search in Google Scholar

Received: 2018-06-29
Accepted: 2018-11-10
Published Online: 2018-12-06
Published in Print: 2019-02-23

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0187/html
Scroll to top button