Home Abundant Lump Solution and Interaction Phenomenon of (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation
Article
Licensed
Unlicensed Requires Authentication

Abundant Lump Solution and Interaction Phenomenon of (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation

  • Jianqing Lü , Sudao Bilige EMAIL logo and Xiaoqing Gao
Published/Copyright: November 28, 2018

Abstract

In this paper, with the help of symbolic computation system Mathematica, six kinds of lump solutions and two classes of interaction solutions are discussed to the (3+1)-dimensional generalized Kadomtsev–Petviashvili equation via using generalized bilinear form with a dependent variable transformation. Particularly, one special case are plotted as illustrative examples, and some contour plots with different determinant values are presented. Simultaneously, we studied the trajectory of the interaction solution.

MSC 2010: 35C08; 35Q51; 37K40

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11661060), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2018LH01013).

References

[1] Y. Zhang, H. Dong, X. Zhang and H. Yang, Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation, Comput. Math. Appl. 73 (2017), 246.10.1016/j.camwa.2016.11.009Search in Google Scholar

[2] M. S. Mani Rajan and A. Mahalingam, Nonautonomous solitons in modified inhomogeneous Hirota equation: soliton control and soliton interaction, Nonlinear Dyn. 79 (2015), 2469.10.1007/s11071-014-1826-ySearch in Google Scholar

[3] A. Biswas and C. M. Khalique, Stationary solutions for nonlinear dispersive Schrödinger equation, Nonlinear Dyn. 63 (2011), 623.10.1007/s11071-010-9824-1Search in Google Scholar

[4] M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, 1999.Search in Google Scholar

[5] J. H. Jin, Multiple solutions of the Kirchhoff-type problem in RN, Appl. Math. Nonlinear Sci. 1 (2016), 229–238.10.21042/AMNS.2016.1.00017Search in Google Scholar

[6] W. X. Ma and Z. N. Zhu, Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput. 218 (2012), 11871–11879.10.1016/j.amc.2012.05.049Search in Google Scholar

[7] J. H. He, Exp-function method for fractional differential equations, Int. J. Nonlin. Sci. Num. 14(6) (2013), 363–366.10.1515/ijnsns-2011-0132Search in Google Scholar

[8] S. D. Zhu, Exp-function method for the discrete mKdV lattice, Int. J. Nonlin. Sci. Num. 8(3) (2007), 465–468.10.1515/IJNSNS.2007.8.3.465Search in Google Scholar

[9] C. Q. Dai and J. F. Zhang, Application of hes exp-function method to the stochastic mKdV equation, Int. J. Nonlin. Sci. Num. 10(5) (2009), 675–680.10.1515/IJNSNS.2009.10.5.675Search in Google Scholar

[10] A. Esen and S. Kutluay, Application of the exp-function method to the two dimensional Sine-Gordon equation, Int. J. Nonlin. Sci. Num. 10(10) (2009), 1355–1360.10.1515/IJNSNS.2009.10.10.1355Search in Google Scholar

[11] H. A. Abdusalam, On an improved complex tanh-function Method, Int. J. Nonlin. Sci. Num. 6(2) (2005), 99–106.10.1515/IJNSNS.2005.6.2.99Search in Google Scholar

[12] S. D. Bilige and T. M. Chaolu, An extended simplest equation method and its application to several forms of the fifth-order KdV equation, Appl. Math. Comput. 216(11) (2010), 3146–3153.10.1016/j.amc.2010.04.029Search in Google Scholar

[13] Z. D. Dai, J. Liu and Z. J. Liu, Exact periodic kink-wave and degenerative soliton solutions for potential Kadomtsev-Petviashvili equation, Commun. Nonlin. Sci. Numer. Simul. 15 (2010), 2331–2336.10.1016/j.cnsns.2009.09.037Search in Google Scholar

[14] Y. L. Sun, W. X. Ma, J. P. Yu and C. M. Khalique, Exact solutions of the Rosenau-Hyman equation, coupled KdV system and Burgers-Huxley equation using modified transformed rational function method, Mod. Phys. Lett. B 32 (2018), 1850282.10.1142/S0217984918502822Search in Google Scholar

[15] J. P. Yu and Y. L. Sun, A direct Bäcklund transformation for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation, Nonlinear Dyn. DOI 10.1007/s11071017-3799-0.Search in Google Scholar

[16] J. P. Yu and Y. L. Sun, A note on the Gaussons of some new logarithmic evolution equations, Comput. Math. Appl. 74 (2017), 258–265.10.1016/j.camwa.2017.04.014Search in Google Scholar

[17] J. P. Yu and Y. L. Sun, Exact traveling wave solutions to the (2+1)-dimensional Biswas-Milovic equations, Optik, DOI: http://dx.doi.org/doi:10.1016/j.ijleo.2017.09.023.Search in Google Scholar

[18] J. P. Yu and Y. L. Sun, Modified method of simplest equation and its applications to the Bogoyavlenskii equation, Comput. Math. Appl. 72 (2016), 1943–1955.10.1016/j.camwa.2016.08.002Search in Google Scholar

[19] J. P. Yu, J. Jing, Y. L. Sun and S. P. Wu, (n+1)-Dimensional reduced differential transform method for solving partial differential equations, Appl. Math. Comput. 273 (2016), 697–705.10.1016/j.amc.2015.10.016Search in Google Scholar

[20] J. P. Yu, D. S. Wang, Y. L. Sun and S. P. Wu, Modified method of simplest equation for obtaining exact solutions of the Zakharov-Kuznetsov equation, the modified Zakharov-Kuznetsov equation and their generalized forms, Nonlinear Dyn. 85 (2016), 2449–2465.10.1007/s11071-016-2837-7Search in Google Scholar

[21] S. V. Manakov, V. E. Zakhorov, L. A. Bordag, et al., Two dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction, Phys. Lett. A 63 (1977), 205–206.10.1016/0375-9601(77)90875-1Search in Google Scholar

[22] K. A. Gorshkov, D. E. Pelinovsky and Y. A. Stepanyants, Normal and anomalous scattering, formation and decay of bound states of two-dimensional solitons described by the Kadomtsev-Petviashvili equation, JETP 77(2) (1993), 237–245.Search in Google Scholar

[23] X. Lü, W. X. Ma, S. T. Chen, et al., A note on rational solutions to a Hirota-Satsuma-like equation, Appl. Math. Lett. 58 (2016), 13–18.10.1016/j.aml.2015.12.019Search in Google Scholar

[24] W. X. Ma, Lump solutions to the Kadomtsev-Peviashvili equation, Phys. Lett. A 379 (2015), 1975–1978.10.1016/j.physleta.2015.06.061Search in Google Scholar

[25] W. X. Ma, Z. Qin and X. Lü, Lump solutions to dimensionally reduced p-gKP and p-gBKP equations, Nonlinear Dyn. 84 (2016), 923–931.10.1007/s11071-015-2539-6Search in Google Scholar

[26] W. X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dyn. 85 (2016), 1217–1222.10.1007/s11071-016-2755-8Search in Google Scholar

[27] X. Lü, S. T. Chen and W. X. Ma, Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dyn. 86 (2016), 1–12.10.1007/s11071-016-2905-zSearch in Google Scholar

[28] L. N. Gao, Y. Y. Zi, Y. H. Yin, W. X. Ma and X. Lü, Bäcklund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dyn. 89 (2017), 2233–2240.10.1007/s11071-017-3581-3Search in Google Scholar

[29] J. Q. Lv and S. D.Bilige, Lump solutions of a (2+1)-dimensional bSK equation, Nonlinear Dyn. 90 (2017), 2119–2124.10.1007/s11071-017-3788-3Search in Google Scholar

[30] C. J. Wang, Lump solution and integrability for the associated Hirota bilinear equation, Nonlinear Dyn. 87 (2017), 2635–2642.10.1007/s11071-016-3216-0Search in Google Scholar

[31] J. P. Yu and Y. L. Sun, Lump solutions to dimensionally reduced Kadomtsev-Petviashvili-like equations, Nonlinear Dyn. 87 (2017), 1405–1412.10.1007/s11071-016-3122-5Search in Google Scholar

[32] J. P. Yu and Y. L. Sun, Study of lump solutions to dimensionally reduced generalized KP equations, Nonlinear Dyn. 87 (2017), 2755–2763.10.1007/s11071-016-3225-zSearch in Google Scholar

[33] J. P. Yu and Y. L. Sun, Rational solutions to two new KP-like equations, Comput. Math. App. 72(6) (2016), 1556–1572.10.1016/j.camwa.2016.07.011Search in Google Scholar

[34] C. J. Wang, Spatiotemporal deformation of lump solution to (2 + 1)-dimensional KdV equation, Nonlinear Dyn. 84 (2016) 697–702.10.1007/s11071-015-2519-xSearch in Google Scholar

[35] H. Q. Zhao and W. X. Ma, Mixed lump-kink solutions to the KP equation, Comput. Math. Appl. 74 (2017), 1399–1405.10.1016/j.camwa.2017.06.034Search in Google Scholar

[36] W. X. Ma, Y. Zhou and R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations, Int. J. Mod. Phys. B 30 (2016), 1640018.10.1142/S021797921640018XSearch in Google Scholar

[37] J. B. Zhang and W. X. Ma, Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl. 74 (2017), 591–596.10.1016/j.camwa.2017.05.010Search in Google Scholar

[38] J. Y. Yang, W. X. Ma and Z. Y. Qin, Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation, Anal. Math. Phys. 1 (2017), 1–10.10.1007/s13324-017-0181-9Search in Google Scholar

[39] J. Y. Yang and W. X. Ma, Abundant interaction solutions of the KP equation, Nonlinear Dyn. 89 (2017), 1539–1544.10.1007/s11071-017-3533-ySearch in Google Scholar

[40] J. Y. Yang and W. X. Ma, Abundant lump-type solutions of the Jimbo-Miwa equation in (3+1)-dimensions, Comput. Math. Appl. 52 (2017), 24–31.10.1016/j.camwa.2016.11.007Search in Google Scholar

[41] L. L. Huang and Y. Chen, Lump solutions and interaction phenomenon for (2+1)-dimensional Sawada-Kotera equation, Commun. Theor. Phys. 67 (2017), 473–478.10.1088/0253-6102/67/5/473Search in Google Scholar

[42] J. Q. Lü, S. D. Bilige and T. M. ChaoLu, The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order KdV equation, Nonlinear Dyn. 13 (2017), 1–8.10.1007/s11071-017-3972-5Search in Google Scholar

[43] X. Zhang and Y. Chen, Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo-Miwa equation. Commun. Nonlinear Sci. Numer. Simulat. 52 (2017), 24–31.10.1016/j.cnsns.2017.03.021Search in Google Scholar

[44] Y. N. Tang, S. Q. Tao and Q. Guan, Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations, Comput. Math. Appl. 72 (2016), 2334–2342.10.1016/j.camwa.2016.08.027Search in Google Scholar

[45] Z. Zhao, Y. Chen and B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation, Mod. Phys. Lett. B 14 (2017), 1750157.10.1142/S0217984917501573Search in Google Scholar

[46] C. J. Wang, Z. D. Dai and C. F. Liu, Interaction between Kink solitary wave and Rogue wave for (2+1)-dimensional burgers equation. Mediterr. J. Math. 13 (2016), 1087–1098.10.1007/s00009-015-0528-0Search in Google Scholar

[47] W. X. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Diff. Eqn. (2016), 264.10.1016/j.jde.2017.10.033Search in Google Scholar

[48] W. X. Ma and A. Abdeljabbar, A bilinear Bäcklund transformation of a (3+1) -dimensional generalized KP equation, Appl. Math. Lett. 25(10) (2012), 1500–1504.10.1016/j.aml.2012.01.003Search in Google Scholar

[49] A. M. Wazwaz, Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation, Commun. Nonlinear Sci. Numer. Simulat. 17(2) (2012), 491–495.10.1016/j.cnsns.2011.05.025Search in Google Scholar

[50] W. X. Ma, A. Abdeljabbar and M. G. Asaad, Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation, Appl. Math. Comput. 217(24) (2011), 10016–10023.10.1016/j.amc.2011.04.077Search in Google Scholar

[51] W. X. Ma, Generalized bilinear differential equations, Stud. Nonlinear Sci. 2(4) (2011), 140–144.Search in Google Scholar

[52] C. Gilson, F. Lambert, J. Nimmo, et al., On the combinatorics of the Hirota D-operators, Proc. Royal Soc. A Math. Phys. Eng. Sci. 452 (1996), 223–234.10.1098/rspa.1996.0013Search in Google Scholar

[53] W. X. Ma, Bilinear equations, Bell polynomials and linear superposition principle, J. Phys. Conf. Ser. 411 (2013), 012021.10.1088/1742-6596/411/1/012021Search in Google Scholar

[54] A. S. Fokas, D. E. Pelinovsky and C. Sulaem, Interaction of lumps with a line soliton for the DSII equation. Phys. D 152–153 (2001), 189–198.10.1016/S0167-2789(01)00170-1Search in Google Scholar

[55] W. X. Ma, Y. Zhou and R. Dougherty, Lump-type solutions to nonlinear differential equations derived from generalized bilinear equation. Int. J. Mod. Phys. B 30(28n29) (2016), 1640018–.10.1142/S021797921640018XSearch in Google Scholar

Received: 2018-02-03
Accepted: 2018-11-03
Published Online: 2018-11-28
Published in Print: 2019-02-23

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0034/html
Scroll to top button