Startseite Technik On a Non-linear Boundary-Layer Problem for the Fractional Blasius-Type Equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On a Non-linear Boundary-Layer Problem for the Fractional Blasius-Type Equation

  • Ramiz Tapdigoglu und Berikbol T. Torebek EMAIL logo
Veröffentlicht/Copyright: 31. Mai 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we consider a non-linear sequential differential equation with Caputo fractional derivative of Blasius type and we reduce the problem to the equivalent non-linear integral equation. We prove the complete continuity of the non-linear integral operator. The theorem on the existence of a solution of the problem for the Blasius equation of fractional order is also proved.

MSC 2010: 2000; 35A09; 34K06

Acknowledgements:

The authors are grateful to Professor Mokhtar Kirane for valuable advices during discussions of the results of the present work. The final version of this paper was completed when Berikbol T. Torebek was visiting the University of La Rochelle. The authors would like to thank the editor and referees for their valuable comments and remarks, which led to a great improvement of the article. The second named author is financially supported by a grant from the Ministry of Science and Education of the Republic of Kazakhstan (Grant No.AP05131756).

References

[1] B. Brighi, The equation f'''+ff''+g(f')=0 and the associated boundary value problems, Results in Math. 61 (2012), 355–391.10.1007/s00025-011-0122-0Suche in Google Scholar

[2] H. Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Angew. Math. Phys. 56 (1908), 1–37.Suche in Google Scholar

[3] V. M. Falkner, S. W. Skan, Solutions of the boundary layer equations, Phill. Mag. 7 (12) (1931), 865–896.10.1080/14786443109461870Suche in Google Scholar

[4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations. Elsevier, North-Holland. Mathematics studies, 2006, -539p.Suche in Google Scholar

[5] I. Podlubny, Fractional differential equations. Mathematics in Science and Engineering, V.198. Academic Press, 1999, -356 p.Suche in Google Scholar

[6] K. M. Furati, Bounds on the solution of a Cauchy-type problem involving a weighted sequential fractional derivative. Fract. Calc. Appl. Anal. 16 (1) (2013), 171–188.10.2478/s13540-013-0012-0Suche in Google Scholar

[7] B. Kh. Turmetov, B. T. Torebek, On solvability of some boundary value problems for a fractional analogue of the Helmholtz equation. New York J. Math. 20 (2014), 1237–1251.Suche in Google Scholar

[8] M. B. Glauert, M. J. Lighthill, The axisymmetric boundary layer on a long thin cylinder, Proc. R. Soc. London 320 (1955), 188–203.10.1098/rspa.1955.0121Suche in Google Scholar

[9] H. Schlichting, Boundary Layer Theory, 7 th edition, McGraw Hill, 1951.Suche in Google Scholar

[10] L. D. Landau, E. M. Livshitz, Hydrodynamics, Moskow. Nauka. 1988.Suche in Google Scholar

[11] V. A. Trenogin, Functional analysis. Moskow, Nauka, 1980.Suche in Google Scholar

[12] A. I. Dreglea, N. A. Sidorov, Continuous solutions of some boundary layer problem, Proc. Appl. Math. Mech. 7 (1) (2007), P.2150037–P.2150038.10.1002/pamm.200700194Suche in Google Scholar

[13] R. Lin, F. Liu, Fractional high order methods for the nonlinear fractional ordinary differential equation, Nonlinear Anal. 66 (2007), 856–869.10.1016/j.na.2005.12.027Suche in Google Scholar

[14] K. Diethelm, N. J. Ford, Analysis of fractional differential equations. J. Math. Anal. Appl. 265, (2002) 229–248.10.1006/jmaa.2000.7194Suche in Google Scholar

[15] V. Lakshmikanthama, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal. 69 (2008), 2677–2682.10.1016/j.na.2007.08.042Suche in Google Scholar

[16] B. Ahmad, On nonlocal boundary value problems for nonlinear integro-differential equations of arbitrary fractional order, Results Math. 63 (1) (2013), 183–194.10.1007/s00025-011-0187-9Suche in Google Scholar

[17] A. Cabada, G. Wang, Positive solutions of nonlinear fractional differential equations with integral boundary value conditions, J. Math. Anal. Appl. 389 (1) (2012), 403–411.10.1016/j.jmaa.2011.11.065Suche in Google Scholar

[18] B.-P. Moghaddam, J.-A. Tenreiro Machado, A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fractional Calculus Appl. Anal. 20 (4) (2017), 1023–1042.10.1515/fca-2017-0053Suche in Google Scholar

[19] A. Dabiri, E. A. Butcher, Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods. Appl. Math. Modell. 56 (2018), 424–448.10.1016/j.apm.2017.12.012Suche in Google Scholar

[20] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171–180.10.4064/sm-2-1-171-180Suche in Google Scholar

[21] A. Friedman, Foundations of modern analysis. Dover Publications, Inc. New York, 1970.Suche in Google Scholar

Received: 2017-01-22
Accepted: 2018-05-20
Published Online: 2018-05-31
Published in Print: 2018-07-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0018/html?lang=de
Button zum nach oben scrollen