Home A Lagrange Regularized Kernel Method for Solving Multi-dimensional Time-Fractional Heat Equations
Article
Licensed
Unlicensed Requires Authentication

A Lagrange Regularized Kernel Method for Solving Multi-dimensional Time-Fractional Heat Equations

  • Edson Pindza EMAIL logo , Jules Clement Mba , Eben Maré and Désirée Moubandjo
Published/Copyright: December 17, 2016

Abstract:

Evolution equations containing fractional derivatives can provide suitable mathematical models for describing important physical phenomena. In this paper, we propose an accurate method for numerical solutions of multi-dimensional time-fractional heat equations. The proposed method is based on a fractional exponential integrator scheme in time and the Lagrange regularized kernel method in space. Numerical experiments show the effectiveness of the proposed approach.

MSC 2010: 337K10; 44A15; 45K05; 65M12; 65M70

Acknowledgements

E. Pindza is thankful to Brad Welch for the financial support through RidgeCape Capital.

References

[1] A. H. Bhrawy and M. A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn. 80 (1-2) (2015), 101–116.10.1007/s11071-014-1854-7Search in Google Scholar

[2] A. H. Bhrawy and M. A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dyn. 85 (3) (2016), 1815–1823.10.1007/s11071-016-2797-ySearch in Google Scholar

[3] M. Zayernouri and G. E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys. 293 (2015), 312–338.10.1016/j.jcp.2014.12.001Search in Google Scholar

[4] M. A. Zaky, S. S. Ezz-Eldien, E. H. Doha, J. A. Tenreiro Machado and A. H. Bhrawy, An efficient operational matrix technique for multidimensional variable-order time fractional diffusion equations, J. Comput. Nonlinear Dyn. 11 (6) (2016), 061002 8 pages.10.1115/1.4033723Search in Google Scholar

[5] S. G. Samko, A. A. Kilbas andO. I.Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, Amsterdam, 1993.Search in Google Scholar

[6] F. X. Chang, J. C. Wu and S. H. Dai, The fractional dispersion in pore medium and Lévy distribution, J. Nanjing Univ. Inform. Sci. Technol. Nat. Sci. Ed. 40 (3) (2004), 287–291.Search in Google Scholar

[7] P. D. Ariel, On a second parameter in the solution of the flow near a rotating disk by homotopy analysis method, Commun. Numer. Anal. 2012 (2012), 1–13.10.5899/2012/cna-00111Search in Google Scholar

[8] H. Panahipour, Application of extended Tanh method to generalized Burgers-type equations, Commun. Numer. Anal. 2012 (2012), 1–14.10.5899/2012/cna-00058Search in Google Scholar

[9] Y. Keskin and G. Oturanc, Reduced differential transform method: a new approach to factional partial differential equations, Nonlinear Sci. Lett. A 1 (2010), 207–217.Search in Google Scholar

[10] F. Liu, V. Anh, I. Turner and P. Zhuang, Time fractional advection dispersion equation, J. Comput. Appl. Math. 13 (2003), 233–245.10.1007/BF02936089Search in Google Scholar

[11] Y. Lin and C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), 1533–1552.10.1016/j.jcp.2007.02.001Search in Google Scholar

[12] H. Zhanga, F. Liu, M. S. Phanikumarc andM. M. Meerschaert, Anovel numerical method for the time variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl. 66 (2013), 693–701.10.1016/j.camwa.2013.01.031Search in Google Scholar

[13] X.-J. Yang, H. M. Srivastava and J. A. T. Machado, A new fractional derivative without singular kernel, application to the modelling of the steady heat flow, Therm. Sci. 20 (2) (2016), 753–756.10.2298/TSCI151224222YSearch in Google Scholar

[14] X.-J. Yang, J. A. Tenreiro Machado and H. M. Srivastava, A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach, Appl. Math. Comput. 274 (2016), 143–151.10.1016/j.amc.2015.10.072Search in Google Scholar

[15] X.-J. Yang, J. A. Tenreiro Machado and J. Hristov, Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow, Nonlinear Dyn. 84 (2016), 3–7.10.1007/s11071-015-2085-2Search in Google Scholar

[16] A. H. Bhrawy, A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations, Numer. Algorithms 73 (2016), 91–113.10.1007/s11075-015-0087-2Search in Google Scholar

[17] A. H. Bhrawy, A new spectral algorithm for a time-space fractional partial differential equations with subdiffusion and superdiffusion, AH Bhrawy, Proc. Romanian Acad. A (17) (2016), 39–46.Search in Google Scholar

[18] A. H. Bhrawy and M. A. Zaky, A fractional-order Jacobi tau method for a class of time-fractional PDEs with variable coefficients, Math. Methods Appl. Sci. 39 (2016), 1765–1779.10.1002/mma.3600Search in Google Scholar

[19] A. H. Bhrawy, E. H. Doha S. S. Ezz-Eldien and M. A. Abdelkawy, A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equation, Calcolo 53 (2016), 1–17.10.1007/s10092-014-0132-xSearch in Google Scholar

[20] A. H. Bhrawy and M.A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys. 281 (2015), 876–895.10.1016/j.jcp.2014.10.060Search in Google Scholar

[21] E. Pindza, K. M. Owolabi, Fourier spectral method for higher order space fractional reaction diffusion equations, Commun. Nonlinear Sci. Numer. Simul. 40 (2016), 112–128.10.1016/j.cnsns.2016.04.020Search in Google Scholar

[22] D. K. Hoffman, N. Nayar, O. A. Sharafeddin and D. J. Kouri, Analytic banded approximation for the discretized free propagator, J. Phys. Chem. 95 (21) (1991), 8299–8305.10.1021/j100174a052Search in Google Scholar

[23] D. K. Hoffman and D. J. Kouri, Distributed approximating function theory: A general, fully quantal approach to wave propagation, J. Phys. Chem. 96 (3) (1992), 1179–1184.10.1021/j100182a030Search in Google Scholar

[24] G. W. Wei, D. S. Zhang, D. J. Kouri and D. K. Hoffman, Distributed approximating functional approach to the Fokker-Planck equation: Time propagation, J. Phys. Chem. 107 (8) (1997), 3239–3246.10.1063/1.474674Search in Google Scholar

[25] D. S. Zhang, G. W. Wei, D. J. Kouri and D. K. Hoffman, Distributed approximating functional approach to the Fokker-Planck equation: Eigenfunction expansion, J. Chem. Phys. 106 (12) (1997), 5216–5224.10.1063/1.473520Search in Google Scholar

[26] E. Pindza and E. Maré, Discrete Singular Convolution Method for Numerical Solutions of Fifth Order Korteweg-De Vries Equations, J. Appl. Math. Phys. 1 (2013), 5–15.10.4236/jamp.2013.17002Search in Google Scholar

[27] R. Garrappa and M. Popolizio, Generalized exponential time differencing methods for fractional order problems, Comput. Math. Appl. 62 (2011), 876–890.10.1016/j.camwa.2011.04.054Search in Google Scholar

[28] M. A. Botchev, A short guide to exponential Krylov subspace time integration for Maxwell’s equations, Memorandum 1992, Department of Applied Mathematics, University of Twente, Enschede, ISSN 1874–4850.Search in Google Scholar

[29] G. W. Wei, Discrete singular convolution for the Fokker-Planck equation, J. Chem. Phys. 110 (1999), 8930–8942.10.1063/1.478812Search in Google Scholar

[30] J. KorevaarMathematical methods1Academic Press, New York1968.Search in Google Scholar

[31] G. G. Walter and J. Blum, Probability density estimation using delta sequences, Ann. Stat. 7 (1977), 328–340.10.1214/aos/1176344617Search in Google Scholar

[32] B. Fornberg, A practical guide to pseudospectral methods, Cambridge University Press, UK, 1996.10.1017/CBO9780511626357Search in Google Scholar

[33] G. W. Wei, Y. B. Zhao and Y. Xiang, Discrete singular convolution and its application to the analysis of plates with internal supports. I. Theory and algorithm, Int. J. Numer. Methods Eng. 55 (2002), 913–946.10.1002/nme.526Search in Google Scholar

[34] L. W. Qian, On the regularized Whittaker-Kotel’nikov-Shannon sampling formula, Proc. Am. Math. Soc. 131 (2003), 1169–1176.10.1090/S0002-9939-02-06887-9Search in Google Scholar

[35] L. W. Qian and D. B. Creamer, Localization of the generalized sampling series and its numerical application, SIAM J. Numer. Anal. 43(6) (2006), 2500–2516.10.1137/04061845XSearch in Google Scholar

[36] A. J. Laub, Matrix analysis for scientists and engineers. SIAM, Philadelphia, 2005.10.1137/1.9780898717907Search in Google Scholar

[37] Y. Z, Povstenko, Fractional radial heat conduction in an infinite medium with a cylindrical cavity and associated thermal stresses, Mech. Res. Commun. 37 (4) (2010), 436–440.10.1016/j.mechrescom.2010.04.006Search in Google Scholar

[38] M. Caputo, Linear models of dissipation whose Q is almost frequency independent II, Geophys. J. Roy. Astronom. Soc. 13 (1967), 529–539.10.1111/j.1365-246X.1967.tb02303.xSearch in Google Scholar

[39] I. Podlubny, Fractional differential equations, in: Mathematics in Science and Engineering, vol. 198, Academic Press Inc., San Diego, CA, 1999.Search in Google Scholar

[40] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in: North-Holland mathematics studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.Search in Google Scholar

[41] Y. SAAD, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1992), 209–228.10.1137/0729014Search in Google Scholar

[42] W. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17–29.10.1090/qam/42792Search in Google Scholar

Received: 2016-6-14
Accepted: 2016-10-31
Published Online: 2016-12-17
Published in Print: 2017-2-1

©2017 by De Gruyter

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2016-0089/html
Scroll to top button