Home Barycentric Jacobi Spectral Method for Numerical Solutions of the Generalized Burgers-Huxley Equation
Article
Licensed
Unlicensed Requires Authentication

Barycentric Jacobi Spectral Method for Numerical Solutions of the Generalized Burgers-Huxley Equation

  • Edson Pindza EMAIL logo , M. K. Owolabi and K.C. Patidar
Published/Copyright: January 20, 2017

Abstract

Numerical solutions of nonlinear partial differential equations, such as the generalized and extended Burgers-Huxley equations which combine effects of advection, diffusion, dispersion and nonlinear transfer are considered in this paper. Such system can be divided into linear and nonlinear parts, which allow the use of two numerical approaches. Barycentric Jacobi spectral (BJS) method is employed for the spatial discretization, the resulting nonlinear system of ordinary differential equation is advanced with a fourth-order exponential time differencing predictor corrector. Comparative numerical results for the values of options are presented. The proposed method is very elegant from the computational point of view. Numerical computations for a wide variety of problems, show that the present method offers better accuracy and efficiency in comparison with other previous methods. Moreover the method can be applied to a wide class of nonlinear partial differential equations.

MSC 2010: 65L05; 65M06; 65M20

References

[1] Grooms I. and Julien K., Linearly implicit methods for nonlinear PDEs with linear dispersion and dissipation, J. Comput. Phys. 230 (9) (2011), 3630–3560.10.1016/j.jcp.2011.02.007Search in Google Scholar

[2] Kassam A. and Trefethen L. N., Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (4) (2005), 1214–1233.10.1137/S1064827502410633Search in Google Scholar

[3] Baltensperger R., Berrut J. P. and Noël B., Exponential convergence of a linear rational interpolant between transformed Chebyshev points, Math. Comput. 68 (227) (1999), 1109–1120.10.1090/S0025-5718-99-01070-4Search in Google Scholar

[4] Wang H. and Huybrechs D., Explicit barycentric weights for polynomial interpolation in the roots or extrema of classical orthogonal polynomials, Math. Comput. 83 (290) (2014), 2893–2914.10.1090/S0025-5718-2014-02821-4Search in Google Scholar

[5] Cheney E. W., Introduction to approximation theory, McGraw-Hill, New York, 1966.Search in Google Scholar

[6] Davis P. J., Interpolation and Approximation, Dover Publications Inc., New York, 1975.Search in Google Scholar

[7] Mason J. C. and Handscomb D. C., Chebyshev polynomial, CRC Press, New York, 2003.10.1201/9781420036114Search in Google Scholar

[8] Dahlquist G. and Björck A., Numerical methods in scientific computing, volume I. SIAM, Philadelphia, 2007.10.1137/1.9780898717785Search in Google Scholar

[9] Davis P. J. and Rabinowitz P., Methods of numerical integration, 2nd edition, Academic Press, 1984.10.1016/B978-0-12-206360-2.50012-1Search in Google Scholar

[10] Süli E. and Mayers D., An introduction to numerical analysis, Cambridge University Press, New York, 2003.10.1017/CBO9780511801181Search in Google Scholar

[11] Rainville E. D., Special functions, Macmillan, New York, 1960.Search in Google Scholar

[12] Wang H. and Xiang S., On the convergence rates of Legendre approximation, Math. Comput. 81 (278) (2012), 861–877.10.1090/S0025-5718-2011-02549-4Search in Google Scholar

[13] SenGupta I., Spectral analysis for a three-dimensional superradiance problem, J. Math. Anal. Appl. 375 (2011), 762–776.10.1016/j.jmaa.2010.10.003Search in Google Scholar

[14] SenGupta I. et al., Concentration problems for bandpass filters in communication theory over disjoint frequency intervals and numerical solutions, J. Fourier Anal. Appl. 18 (2012), 182–210.10.1007/s00041-011-9197-ySearch in Google Scholar

[15] Cox S. M. and Matthews P. C., Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2) (2002), 430–455.10.1006/jcph.2002.6995Search in Google Scholar

[16] Li D., Zhang C., Wang W. and Zhang Y., Implicit-explicit predictor-corrector schemes for nonlinear parabolic differential equations, Appl. Math. Modell. 35 (6) (2011), 2711-2722.10.1016/j.apm.2010.11.061Search in Google Scholar

[17] Hochbruck M. and Ostermann A., Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. 43 (3) (2005), 1069–1090.10.1137/040611434Search in Google Scholar

[18] Hochbruck M. and Ostermann A., Exponential integrators, Acta Numer. 19 (2010), 209–286.10.1017/S0962492910000048Search in Google Scholar

[19] Luan V.T. and Ostermann A., Explicit exponential Runge-Kutta methods of high order for parabolic problems, J. Comput. Appl. Math. 256 (2014), 168–179.10.1016/j.cam.2013.07.027Search in Google Scholar

[20] Beylkin G., J. Keiser M. and Vozovoi L., A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (2) (1998), 362–387.10.1006/jcph.1998.6093Search in Google Scholar

[21] Krogstad S., Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (1) (2005), 72–88.10.1016/j.jcp.2004.08.006Search in Google Scholar

[22] Hochbruck M., A. Ostermann and Schweitzer J., Exponential Rosenbrock-type methods, SIAM J. Numer. Anal. 47 (2009), 786–803.10.1137/080717717Search in Google Scholar

[23] Luan V. T. and Ostermann A., Exponential B-series: The stiff case, SIAM J. Numer. Anal. 51 (2013), 3431–3445.10.1137/130920204Search in Google Scholar

[24] Bratsos A. G., A fourth-order numerical scheme for solving the modified Burgers equation, Comput. Math. Appl. 60 (5) (2010), 1393–1400.10.1016/j.camwa.2010.06.021Search in Google Scholar

[25] Hodgkin A. L. and Huxley A. F., A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes, J. Phys. 117 (4) (1952), 500–544.10.1113/jphysiol.1952.sp004764Search in Google Scholar

[26] Wazwaz A. M., Traveling wave solutions of the generalized forms of Burgers, Burgers-KdV and Burgers-Huxley equations, Appl. Math. Comput. 169 (1) (2005), 639–656.10.1016/j.amc.2004.09.081Search in Google Scholar

[27] Kyrychko Y. N., M. Bartuccelli V. and Blyuss K. B., Persistence of travelling wave solutions of a fourth order diffusion system, J. Comput. Appl. Math. 176 (2) (2005), 433–443.10.1016/j.cam.2004.07.028Search in Google Scholar

[28] Fitzhugh R., Mathematical models of excitation and propagation in nerve, in: H. P. Schwan ed., Biological engineering, pp. 1–85. McGraw Hill, New York, 1969.Search in Google Scholar

[29] Lu B. Q., B. Xiu Z., Z. Pang L. and Jiang X. F., Exact traveling wave solution of one class of nonlinear diffusion equation, Phys. Lett. A 175 (2) (1993), 113–115.10.1016/0375-9601(93)90131-ISearch in Google Scholar

[30] Wazwaz A. M., Analytical study on Burgers, Fisher, Huxley equations and combined forms of these equations, Appl. Math. Comput. 195 (2) (2008), 754–761.10.1016/j.amc.2007.05.020Search in Google Scholar

[31] Molabahrami A. and Khani F., The homotopy analysis method to solve the Burgers-Huxley equation, Nonlinear Anal. Real World Appl. 10 (2) (2009), 589–600.10.1016/j.nonrwa.2007.10.014Search in Google Scholar

[32] Deng X., Travelling wave solutions for the generalized Burgers-Huxley equation, Appl. Math. Comput. 204 (2) (2008), 733–737.10.1016/j.amc.2008.07.020Search in Google Scholar

[33] Wang X. Y., Zhu Z. S. and Lu Y. K., Solitary wave solutions of the generalised Burgers-Huxley equation, J. Phys. A 23 (3) (1990), 271–274.10.1088/0305-4470/23/3/011Search in Google Scholar

[34] Soheili A. R., Kerayechian A. and Davoodi N., Adaptive numerical method for Burgers-type nonlinear equations, Appl. Math. Comput. 219 (8) (2012), 3486–3495.10.1016/j.amc.2012.09.019Search in Google Scholar

[35] Bratsos A. G., A fourth order improved numerical scheme for the generalized Burgers-Huxley equation, Am. J. Comput. Math. 1 (3) 152–158.10.4236/ajcm.2011.13017Search in Google Scholar

[36] Ismail H. N. A., Raslan K. and Rabboh A. A. A., Adomian decomposition method for Burger’s Huxley and Burger’s-Fisher equations, Appl. Math. Comput. 159 (1) (2004), 291–301.10.1016/j.amc.2003.10.050Search in Google Scholar

[37] Javidi M., A numerical solution of the generalized Burger’s-Huxley equation by pseudospectral method and Darvishi’s preconditioning, Appl. Math. Comput. 175 (2) (2006), 1619–1628.10.1016/j.amc.2005.09.009Search in Google Scholar

[38] Javidi M., A numerical solution of the generalized Burgers-Huxley equation by spectral collocation method, Appl. Math. Comput. 178 (2) (2006), 338–344.10.1016/j.amc.2005.11.051Search in Google Scholar

[39] Batiha B., Noorani M. S. M. and Hashim I., Application of variational iteration method to the generalized Burgers-Huxley equation, Chaos Solitons Fractals 36 (3) (2008), 660–663.10.1016/j.chaos.2006.06.080Search in Google Scholar

[40] Murray J. D., Mathematical biology I: an introduction, Springer-Verlag, New York, 2002.10.1007/b98868Search in Google Scholar

[41] Lagrange J. L., Leçons élémentaires sur les mathématiques, données à l’Ecole Normale en 1795, J. de l’École polytech 7 (1795), 183–287.Search in Google Scholar

[42] Henrici P., Essentials of numerical analysis with pocket calculator demonstrations, Wiley, New York, 1982.Search in Google Scholar

[43] Werner W., Polynomial interpolation: Lagrange versus Newton, Math. Comput. 43 (167) (1984), 205–217.10.1090/S0025-5718-1984-0744931-0Search in Google Scholar

[44] Berrut J. P. and Trefethen L. N., Barycentric Lagrange interpolation, SIAM Rev. 46 (3) (2004), 501–517.10.1137/S0036144502417715Search in Google Scholar

[45] Webb M., Trefethen L. L. N. and Gonnet P., Stability of Barycentric Interpolation Formulas for Extrapolation, SIAM J. Sci. Comput. 34 (6) (2012), A3009–A3015.10.1137/110848797Search in Google Scholar

[46] Minchev B. V., Exponential integrators for semilinear problems, PhD thesis, University of Bergen, 2004.Search in Google Scholar

[47] Saad Y., Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2nd edition, UK, 2003.10.1137/1.9780898718003Search in Google Scholar

[48] Arnoldi W., The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951), 17–29.10.1090/qam/42792Search in Google Scholar

[49] Owolabi K. M. and Patidar K. C., Numerical solution of singular patterns in one-dimensional Gray-Scott-like models, Int. J. Nonlinear Sci. Numer. Simul. 15 (7-8) (2014), 437–462.10.1515/ijnsns-2013-0124Search in Google Scholar

[50] Javidi M. and Golbabai A., A new domain decomposition algorithm for generalized Burger’s-Huxley equation based on Chebyshev polynomials and preconditioning, Chaos Solitons Fractals 39 (2) (2009), 849–857.10.1016/j.chaos.2007.01.099Search in Google Scholar

[51] Harris S. E., Sonic shocks governed by the modified Burgers’ equation, Eur. J. Appl. Math. 7 (2) (1996), 201–222.10.1017/S0956792500002291Search in Google Scholar

[52] Griffiths G. W. and Schiesser W. E., Traveling wave analysis of partial differential equations, Academic Press, Burlington, VT, 2012.Search in Google Scholar

[53] Irk D., Sextic B-spline collocation method for the modified Burgers equation, Kybernetes 38 (9) (2009), 1599–1620.10.1108/03684920910991568Search in Google Scholar

[54] Ramadan M. A. and El-Danaf T. S., Numerical treatment for the modified Burgers equation, Math. Comput. Simul. 70 (2) (2005), 90–98.10.1016/j.matcom.2005.04.002Search in Google Scholar

[55] Saka B. and Daǧ I., A numerical study of the Burgers’ equation, J. Franklin Inst. 345 (4) (2008), 328–348.10.1016/j.jfranklin.2007.10.004Search in Google Scholar

Received: 2016-2-24
Accepted: 2016-10-31
Published Online: 2017-1-20
Published in Print: 2017-2-1

©2017 by De Gruyter

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2016-0032/html
Scroll to top button