Home Dynamic Analysis of a Lü Model in Six Dimensions and Its Projections
Article
Licensed
Unlicensed Requires Authentication

Dynamic Analysis of a Lü Model in Six Dimensions and Its Projections

  • Luis Alberto Quezada-Téllez EMAIL logo , Salvador Carrillo-Moreno , Oscar Rosas-Jaimes ORCID logo , José Job Flores-Godoy and Guillermo Fernández-Anaya
Published/Copyright: July 20, 2017

Abstract

In this article, extended complex Lü models (ECLMs) are proposed. They are obtained by substituting the real variables of the classical Lü model by complex variables. These projections, spanning from five dimensions (5D) and six dimensions (6D), are studied in their dynamics, which include phase spaces, calculations of eigenvalues and Lyapunov’s exponents, Poincaré maps, bifurcation diagrams, and related analyses. It is shown that in the case of a 5D extension, we have obtained chaotic trajectories; meanwhile the 6D extension shows quasiperiodic and hyperchaotic behaviors and it exhibits strange nonchaotic attractor (SNA) features.

References

[1] Lorenz E.N., Deterministic nonperiodic flow, J. Atmos. Sci. 20 (2) (1963), 130–14110.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2Search in Google Scholar

[2] Chen G. and Ueta T., Yet another chaotic attractor, Int. J. Bifurcation and Chaos 9 (1999), 1465–1466.10.1142/S0218127499001024Search in Google Scholar

[3] Lü J., Chen G., A new chaotic attractor coined, Int. J. Bifurcat. Chaos 12 (3) (2002), 659–661.10.1142/S0218127402004620Search in Google Scholar

[4] Musielak Z. and Musielak D., High-dimensional chaos in dissipative and driven dynamical systems, Int. J. Bifurcation Chaos 19 (09) (2009), 2823–2869.10.1142/S0218127409024517Search in Google Scholar

[5] Yang T. and Chua L.O., Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication, IEEE Trans. Circuits Syst. Fundam. Theory Appl. 44 (10) (1997), 976–988.10.1109/81.633887Search in Google Scholar

[6] Bînzar T. and Lăzareanu C., On a new chaotic system, Math. Meth. Appl. Sci. 38 (2015), 1631–1641.10.1002/mma.3174Search in Google Scholar

[7] Rossler O., An equation for hyperchaos, Physics Letters A 71 (2) (1979), 155–157.10.1016/0375-9601(79)90150-6Search in Google Scholar

[8] Kapitaniak T., On strange nonchaotic attractors and their dimensions, Chaos, Solitons Fractals 1 (1) (1991), 67–77.10.1016/0960-0779(91)90056-FSearch in Google Scholar

[9] Feudel U., Kuznetsov S. and Pikovsky A., Strange nonchaotic attractors: Dynamics between order and chaos in quasiperiodically forced systems, World Scientific, New Jersey, 2006.10.1142/6006Search in Google Scholar

[10] Mahmoud G.M., M. Gamal, M.E. Ahmed, E. Mansour and Sabor N., On autonomous and nonautonomous modified hyperchaotic complex Lü systems, Int. J. Bifurcation Chaos 21 (7) (2011), 1913–1926.10.1142/S0218127411029525Search in Google Scholar

[11] Gibbon J. and McGuinness M., The real and complex Lorenz equations in rotating fluids and lasers, Phys D 5 (1) (1982), 108–122.10.1016/0167-2789(82)90053-7Search in Google Scholar

[12] Gómez-Mont X., Flores-Godoy, J. J., Fernández-Anaya, G.: Some attractors in the extended complex Lorenz model, Int. J. Bifurcat. Chaos 23 (9), 1–15 (2013).10.1142/S0218127413300310Search in Google Scholar

[13] Reiterer P., Lainscsek C., Schürrer F., Letellier C. and Maquet J., A nine-dimensional Lorenz system to study high-dimensional chaos, J. Phys. A: Math. Gen. 31 (34) (1998), 7121–7139.10.1088/0305-4470/31/34/015Search in Google Scholar

[14] Rech P.C., Delimiting hyperchaotic regions in parameter planes of a 5D continuous-time dynamical system, Appl. Math. Comput. 247 (2014), 13–17.10.1016/j.amc.2014.08.084Search in Google Scholar

[15] Barrio R., Martínez M.A., Serrano S. and Wilczak D., When chaos meets hyperchaos: 4D Rössler model, Phys. Lett. A 379 (38) (2015), 2300–2305.10.1016/j.physleta.2015.07.035Search in Google Scholar

[16] Wen-Juan W., C. Zeng-Qiang and Zhu-Zhi Y., Local bifurcation analysis of a four-dimensional hyperchaotic system, Chin. Phys. B 17 (7) (2008), 2420–2432.10.1088/1674-1056/17/7/015Search in Google Scholar

[17] Chen Y. and Yang Q., Dynamics of a hyperchaotic Lorenz-type system, Nonlinear Dyn. 77 (3) (2014), 569–581.10.1007/s11071-014-1318-0Search in Google Scholar

[18] Mahmoud G.M., M.E. Ahmed and Mahmoud E.E., Analysis of hyperchaotic complex Lorenz systems, Int. J. Mod. Phys. C 19 (10) (2008), 1477–1494.10.1142/S0129183108013151Search in Google Scholar

[19] Bao B., J. Xu, Z. Liu and Ma Z., Hyperchaos from an augmented Lü system, Int. J. Bifurcation Chaos 20 (11) (2010), 3689–3698.10.1142/S0218127410027969Search in Google Scholar

[20] Mahmoud G.M., Mahmoud E.E. and Ahmed M.E., On the hyperchaotic complex Lü system, Nonlinear Dyn. 58 (4) (2009), 725–738.10.1142/9789814271349_0026Search in Google Scholar

[21] Zarei A., Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors, Nonlinear Dyn. 81 (2015), 585–605.10.1007/s11071-015-2013-5Search in Google Scholar

[22] Prants F.G. and Rech P.C., Suppression of periodic structures and the onset of hyperchaos in a parameter-space of the Baier-Sahle flow, Chaos, Solitons and Fractals 83 (2016), 105–111.10.1016/j.chaos.2015.11.037Search in Google Scholar

[23] Prants W.T. and Rech P.C., The organization of periodicity and hyperchaos in an asummetric coupling of two chaotic Rössler oscillators, Physica Scripta 88 (1) (2013), pp. 015001.10.1088/0031-8949/88/01/015001Search in Google Scholar

[24] Correira M.J. and Rech P.C., Hyperchaotic states in the parameter space, Applied Mathematics and Computation 218 (12) (2012), 6711–6715.10.1016/j.amc.2011.12.035Search in Google Scholar

[25] Rech P.C., Chaos and hyperchaos in a Hopfield neural network, Neurocomputing 74 (17) (2011), 3361–3364.10.1016/j.neucom.2011.05.016Search in Google Scholar

[26] Rech P.C. and Albuquerque H.A., A hyperchaotic Chua system, Int. J. Bifurcation Chaos 19 (11) (2009), 3823–3828.10.1142/S0218127409025146Search in Google Scholar

[27] Correira M.J. and Rech P.C., Hyperchaos in a new four-dimensional autonomous system, Int. J. Bifurcation Chaos 20 (10) (2010), 3295–3301.10.1142/S0218127410027684Search in Google Scholar

[28] Barreira L. and Valls C., Complex Analysis and differential equations, Springer Science & Business Media, 2012.10.1007/978-1-4471-4008-5Search in Google Scholar

[29] Fang T. and Sun J., Stability analysis of complex-valued nonlinear differential system, J. Appl. Math., Hindawi Publishing Corporation, Article ID 621957, 7 pages, 2013.10.1155/2013/621957Search in Google Scholar

[30] Cruz-Hernandez C., Synchronization of Time-Delay Chua’s Oscillator with Application to Secure Communication, Nonlinear Dyn. Syst. Theory 4 (1) (2004), 1–13.Search in Google Scholar

[31] Wolf A., Swift J.B., Swinney H.L. and Vastano J.A., Determining Lyapunov exponents from a time series, Physica D 16 (3) (1985), 285–317.10.1016/0167-2789(85)90011-9Search in Google Scholar

Received: 2016-5-27
Accepted: 2017-5-4
Published Online: 2017-7-20
Published in Print: 2017-7-26

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2016-0076/html
Scroll to top button