Fabrication of electrospun PDMS-PVA hybrid zinc silicate incorporated nanofibrous membranes for air filtration
-
Arjun Sunil Rao
, Nandini A. Pattanashetti
, Basapur Guruprasad
, Hanumanapura Nanjundaswamy Mahendra und Padmakumar A. Bajakke
Abstract
Development of polymeric nanofibers using the electrospinning technique has found potential candidature for tremendous applications including protective clothing, sensors, energy sectors, tissue engineering, wound healing, air filtration, liquid filtration and cosmetics. This is because of the potentiality of the electrospinning method in producing ultrathin fibers ranging from nano to micrometers. Numerous efforts have been made by researchers using electrospinning techniques to regulate the morphology of the developed fibers. Similarly, various polymers and polymer composites have been employed for the development of fibers using electrospinning techniques for different applications. In the current research work, the electrospun nanofibers were produced from a composite solution of polydimethylsiloxane-polyvinyl alcohol (PDMS-PVA) polymers and synthesized zinc silicate (ZnSiO3) nanoparticles. Nanofibrous membranes were produced from the prepared polymer composite solution using electrospinning under high voltage. A morphological study conducted by scanning electron microscopy revealed uniform fibers with diameters ranging from 142 nm to 410 nm. Wettability studies of the electrospun nanofibrous membrane showed an increase in water contact angle from 43° for pristine PDMS-PVA to 92° for ZnSiO3 loaded membranes thereby indicating enhanced hydrophobicity. Air filtration performance testing on the membranes demonstrated that the filtration efficiency was improved from 63° for P0 to 92° for P3, while the quality factor increased from 0.034 Pa−1 to 0.368 Pa−1. Among all the samples, the membrane P3 demonstrated the best performance, whereas P0 showed the lowest performance. Thus, it can be inferred that the incorporation of ZnSiO3 greatly enhanced the air filtration capability of the composite membranes, thereby making the membranes a suitable candidate for air filtration applications and air quality management.
Acknowledgment
The authors would like to thank Nanomaterials Laboratory, JSS Science and Technology University, Mysuru for supporting the work by providing the equipment facility.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119 (8), 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593.Suche in Google Scholar
2. Rasouli, R.; Barhoum, A.; Bechelany, M.; Dufresne, A. Nanofibers for Biomedical and Healthcare Applications. Macromol. Biosci. 2019, 19 (2), 1800256. https://doi.org/10.1002/mabi.201800256.Suche in Google Scholar
3. Ondarcuhu, T.; Joachim, C. Drawing a Single Nanofibre over Hundreds of Microns. Europhys. Lett. 1998, 42 (2), 215; https://doi.org/10.1209/epl/i1998-00233-9.Suche in Google Scholar
4. Fujihara, K.; Teo, W. E.; Lim, T. C.; Ma, Z. An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore, 2005; p. 90.Suche in Google Scholar
5. Maiyalagan, T.; Viswanathan, B.; Varadaraju, U. Fabrication and Characterization of Uniform TiO2 Nanotube Arrays by Sol Gel Template Method. Bull. Mater. Sci. 2006, 29 (7), 705–708. https://www.ias.ac.in/article/fulltext/boms/029/07/0705-0708.Suche in Google Scholar
6. Liu, G.; Ding, J.; Qiao, L.; Guo, A.; Dymov, B. P.; Gleeson, J. T.; Hashimoto, T.; Saijo, K. Polystyrene-Block-Poly (2-cinnamoylethyl methacrylate) Nanofibers—Preparation, Characterization, and Liquid Crystalline Properties. Chem. Eur. J. 1999, 5 (9), 2740–2749. https://doi.org/10.1002/(SICI)1521-3765(19990903)5:9%3C2740::AID-CHEM2740%3E3.0.CO;2-V.10.1002/(SICI)1521-3765(19990903)5:9<2740::AID-CHEM2740>3.3.CO;2-MSuche in Google Scholar
7. Pattanashetti, N. A.; Kariduraganavar, M. Y.; Rao, A. S.; Savadi, A.; Pali, M.; Sonavane, S.; Sunita. Effect of Solvent on the Development of Poly(2-ethyl-2-oxazoline) Nanofibrous Scaffolds Using Electrospinning Technique for Biomedical Applications. Heliyon. 2025, 11(1), e41259. https://doi.org/10.1016/j.heliyon.2024.e41259.Suche in Google Scholar
8. Teo, W.; Ramakrishna, S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17 (14), R89. https://doi.org/10.1088/0957-4484/17/14/r01.Suche in Google Scholar
9. Pakravan, M.; Heuzey, M.-C.; Ajji, A. A Fundamental Study of Chitosan/PEO Electrospinning. Polymer 2011, 52 (21), 4813–4824. https://doi.org/10.1016/j.polymer.2011.08.034.Suche in Google Scholar
10. MacDiarmid, A. G.; Jones, W. E.Jr.; Norris, I. D.; Gao, J.; Johnson, A. T.Jr.; Pinto, N. J.; Hone, J.; Han, B.; Ko, F. K.; Okuzaki, H.; Llaguno, M. Electrostatically-Generated Nanofibers of Electronic Polymers. Synth. Met. 2001, 119, 27. https://doi.org/10.1016/S0379-6779(00)00597-X.Suche in Google Scholar
11. Reneker, D. H.; Chun, I. Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology 1996, 7, 216–223. https://doi.org/10.1088/0957-4484/7/3/009.Suche in Google Scholar
12. Rutledge, G. C.; Fridrikh, S. V. Formation of Fibers by Electrospinning. Adv. Drug. Deliv. Rev. 2007, 59, 1384–1391. https://doi.org/10.1016/j.addr.2007.04.020.Suche in Google Scholar
13. Pu, C. C.; He, J. X.; Cui, S. Z.; Gao, W. D. Fabrication of Nanofibers by a Modified Air-Jet Electrospinning Method. Iran. Polym. J. 2013, 23, 13–25. https://doi.org/10.1007/s13726-013-0195-6.Suche in Google Scholar
14. Li, T. T.; Yan, M. X.; Zhong, Y. Q.; Ren, H. T.; Lou, C. W.; Huang, S. Y.; Lin, J. H. Processing and Characterizations of Rotary Linear Needleless Electrospun Polyvinyl Alcohol (PVA)/Chitosan(CS)/Graphene(Gr) Nanofibrous Membranes. J. Mater. Res. Technol. 2019, 8 (6), 5124–5132. https://doi.org/10.1016/j.jmrt.2019.08.035.Suche in Google Scholar
15. Abhijeet, H.; Swati, B.; Prashant, P.; Amarjitsing, R. Nanofibers: a Current Era in Drug Delivery System. Heliyon 2023, 9, e18917. https://doi.org/10.1016/j.heliyon.2023.e18917.Suche in Google Scholar PubMed PubMed Central
16. Wang, X.-X.; Yu, G. F.; Zhang, J.; Yu, M.; Ramakrishna, S.; Long, Y.-Z. Conductive Polymer Ultrafine Fibers via Electrospinning: Preparation, Physical Properties and Applications. Prog. Mater. Sci. 2021, 115, 100704. https://doi.org/10.1016/j.pmatsci.2020.100704.Suche in Google Scholar
17. Ghajarieh, A.; Habibi, S.; Talebian, A. Biomedical Applications of Nanofibers. Russ. J. Appl. Chem. 2021, 94 (7), 847–872. https://doi.org/10.1134/S1070427221070016.Suche in Google Scholar
18. Omer, S.; Forgách, L.; Zelkó, R.; Sebe, I. Scale-up of Electrospinning: Market Overview of Products and Devices for Pharmaceutical and Biomedical Purposes. Pharmaceutics 2021, 13 (2), 286. https://doi.org/10.3390/pharmaceutics13020286.Suche in Google Scholar PubMed PubMed Central
19. Otitoju, T. A.; Ahmad, A. L.; Ooi, B. S. Superhydrophilic (Superwetting) Surfaces: a Review on Fabrication and Application. J. Ind. Eng. Chem. 2017, 47, 19–40. https://doi.org/10.1016/j.jiec.2016.12.016.Suche in Google Scholar
20. Fürstner, R.; Barthlott, W.; Neinhuis, C.; Walzel, P. Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces. Langmuir 2005, 21 (3), 956–961. https://doi.org/10.1021/la0401011.Suche in Google Scholar PubMed
21. Sun, Z.; Liao, T.; Liu, K.; Jiang, L.; Kim, J. H.; Dou, S. X. Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures. Small 2014, 10 (15), 3001–3006. https://doi.org/10.1002/smll.201400516.Suche in Google Scholar PubMed
22. Xue, C. H.; Guo, X. J.; Ma, J. Z.; Jia, S. T. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization. ACS Appl. Mater. Interfaces 2015, 7 (15), 8251–8259. https://doi.org/10.1021/acsami.5b01426.Suche in Google Scholar PubMed
23. Zhang, B.; Zhao, X.; Li, Y.; Hou, B. Fabrication of Durable Anticorrosion Superhydrophobic Surfaces on Aluminum Substrates via a Facile One-Step Electrodeposition Approach. RSC Adv. 2016, 6 (42), 35455–35465. https://doi.org/10.1039/C6RA05484F.Suche in Google Scholar
24. Privett, B. J.; Youn, J.; Hong, S. A.; Lee, J.; Han, J.; Shin, J. H.; Schoenfisch, M. H. Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces. Langmuir 2011, 27 (15), 9597–9601. https://doi.org/10.1021/la201801e.Suche in Google Scholar PubMed PubMed Central
25. Boinovich, L. B.; Emelyanenko, A. M.; Emelyanenko, K. A.; Maslakov, K. I. Anti-Icing Properties of a Superhydrophobic Surface in a Salt Environment: An Unexpected Increase in Freezing Delay Times for Weak Brine Droplets. Phys. Chem. Chem. Phys. 2016, 18 (4), 3131–3136. https://doi.org/10.1039/C5CP06988B.Suche in Google Scholar
26. Jeon, S.-B.; Kim, D.; Yoon, G.-W.; Yoon, J.-B.; Choi, Y.-K. Self-Cleaning Hybrid Energy Harvester to Generate Power from Raindrop and Sunlight. Nano Energy 2015, 12, 636–645. https://doi.org/10.1016/j.nanoen.2015.01.039.Suche in Google Scholar
27. Lee, C.; Kim, C.-J. Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction. Phys. Rev. Lett. 2011, 106 (1), 14502. https://doi.org/10.1103/PhysRevLett.106.014502.Suche in Google Scholar PubMed
28. Kang, C.; Lu, H.; Yuan, S.; Hong, D.; Yan, K.; Liang, B. Superhydrophilicity/Superhydrophobicity of Nickel Micro-Arrays Fabricated by Electroless Deposition on an Etched Porous Aluminum Template. Chem. Eng. J. 2012, 203, 1–8. https://doi.org/10.1016/j.cej.2012.06.128.Suche in Google Scholar
29. Rao, A. S.; Sannakashappanavar, B. S.; Jayarama, A.; Pinto, R. Study of Rectifying Properties and True Ohmic Contact on Sn Doped V2O5 Thin Films Deposited by Spray Pyrolysis Method. Res. Chem. 2024, 7, 101533. https://doi.org/10.1016/j.rechem.2024.101533.Suche in Google Scholar
30. Wang, F.; Li, S.; Wang, L. Fabrication of Artificial Super-Hydrophobic Lotus-Leaf-Like Bamboo Surfaces Through Soft Lithography. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 389–395. https://doi.org/10.1016/j.colsurfa.2016.11.001.Suche in Google Scholar
31. Xue, C.-H.; Li, Y. R.; Zhang, P.; Ma, J.-Z.; Jia, S.-T. Washable and Wear-Resistant Superhydrophobic Surfaces with Self-Cleaning Property by Chemical Etching of Fibers and Hydrophobization. ACS Appl. Mater. Interfaces 2014, 6 (13), 10153–10161. https://doi.org/10.1021/am501371b.Suche in Google Scholar PubMed
32. Darmanin, T.; Guittard, F. Superhydrophobic Fiber Mats by Electrodeposition of Fluorinated Poly (3, 4-ethyleneoxythiathiophene). J. Am. Chem. Soc. 2011, 133 (39), 15627–15634. https://doi.org/10.1021/ja205283b.Suche in Google Scholar PubMed
33. Das, A.; Hayvaci, H. T.; Tiwari, M. K.; Bayer, I. S.; Erricolo, D.; Megaridis, C. M. Superhydrophobic and Conductive Carbon Nanofiber/PTFE Composite Coatings for EMI Shielding. J. Colloid Interface Sci. 2011, 353 (1), 311–315. https://doi.org/10.1016/j.jcis.2010.09.017.Suche in Google Scholar PubMed
34. Rao, A. S.; Manjunatha, D. V.; Jayarama, A.; Achanta, V. G.; Duttagupta, S. P. Richard Pinto, Power Enhancement of Passive Micro-direct Methanol Fuel Cells with Self-Sulfonation of P (VDF-TrFE) Copolymer During Lamination on Nafion Membrane. Int. J. Hydrogen Energy 2019, 44 (57), 30375–30387. https://doi.org/10.1016/j.ijhydene.2019.09.184.Suche in Google Scholar
35. Arslan, O.; Aytac, Z.; Uyar, T. Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification. ACS Appl. Mater. Interfaces 2016, 8 (30), 19747–19754. https://doi.org/10.1021/acsami.6b05429.Suche in Google Scholar PubMed
36. Tan, S.; Huang, X.; Wu, B. Some Fascinating Phenomena in Electrospinning Processes and Applications of Electrospun Nanofibers. Polym. Int. 2007, 56 (11), 1330–1339. https://doi.org/10.1002/pi.2354.Suche in Google Scholar
37. Singh, A. K.; Singh, J. K. Fabrication of Durable Super-Repellent Surfaces on Cotton Fabric with Liquids of Varying Surface Tension: Low Surface Energy and Highroughness. Appl. Surf. Sci. 2017, 416, 639–648. https://doi.org/10.1016/j.apsusc.2017.04.148.Suche in Google Scholar
38. Kacem, M.; Katir, N.; El Haskouri, J.; Essoumhi, A.; El Kadib, A. Gold Nanoparticles Grown on a Hydrophobic and Texturally Tunable PDMS-Like Framework. New J. Chem. 2021, 45 (23), 10232–10239. https://doi.org/10.1039/d1nj00274k.Suche in Google Scholar
39. Ariati, R.; Sales, F.; Souza, A.; Lima, R. A.; Ribeiro, J. Polydimethylsiloxane Composites Characterization and Its Applications: A Review. Polymers (Basel) 2021, 13 (23). https://doi.org/10.3390/polym13234258.Suche in Google Scholar PubMed PubMed Central
40. Zhang, S.; Li, W.; Wang, W.; Qin, C.; Wang, S. Paper-Based Dual-Mode Liquid Manipulation System: Oil/Water Separation and Time-Lapse Droplet Switch. Chem. Eng. J. 2022, 427. https://doi.org/10.1016/j.cej.2021.131606.Suche in Google Scholar
41. Sadler, E.; Crick, C. R. Suction or Gravity-Fed Oil-Water Separation Using PDMS Coated Glass Filters. Sustain. Mater. Technol. 2021, 29. https://doi.org/10.1016/j.susmat.2021.e00321.Suche in Google Scholar
42. Borok, A.; Laboda, ´K.; Bonyar, A. PDMS Bonding Technologies for Microfluidic Applications: A Review. Biosensors 2021, 11 (8). https://doi.org/10.3390/bios11080292.Suche in Google Scholar PubMed PubMed Central
43. Liu, J.; Yao, Y.; Li, X.; Zhang, Z. Fabrication of Advanced Polydimethylsiloxanebased Functional Materials: Bulk Modifications and Surface Functionalizations. Chem. Eng. J. 2021, 408. https://doi.org/10.1016/j.cej.2020.127262.Suche in Google Scholar
44. Eduok, U.; Faye, O.; Szpunar, J. Recent Developments and Applications Ofprotective Silicone Coatings: A Review of PDMS Functional Materials. Prog. Org. Coating 2017, 111, 124–163. https://doi.org/10.1016/j.porgcoat.2017.05.012.Suche in Google Scholar
45. Wu, Z.; Fang, K.; Chen, W.; Zhao, Y.; Xu, Y.; Zhang, C. Durable Super Hydrophobic and Photocatalytic Cotton Modified by PDMS with TiO2 Supported Bamboo Charcoal Nanocomposites. Ind. Crops Prod. 2021, 171. https://doi.org/10.1016/j.indcrop.2021.113896.Suche in Google Scholar
46. Wolf, M. P.; Salieb-Beugelaar, G. B.; Hunziker, P. PDMS with Designer Functionalities—Properties, Modifications Strategies, and Applications. Prog. Polym. Sci. 2018, 83, 97–134. https://doi.org/10.1016/j.progpolymsci.2018.06.001.Suche in Google Scholar
47. Bolvardi, B.; Seyfi, J.; Hejazi, I.; Otadi, M.; Khonakdar, H. A.; Davachi, S. M. Towards an Efficient and Durable Superhydrophobic Mesh Coated by PDMS/TiO2 Nanocomposites for Oil/Water Separation. Appl. Surf. Sci. 2019, 492, 862–870. https://doi.org/10.1016/j.apsusc.2019.06.268.Suche in Google Scholar
48. Rius-Ayra, O.; Biserova-Tahchieva, A.; Sansa-Lopez, V.; Llorca-Isern, N. Superhydrophobic PDMS Coated 304 Stainless-Steel Mesh for the Removal of HDPE Microplastics. Prog. Org. Coating 2022, 170, 107009. https://doi.org/10.1016/J.PORGCOAT.2022.107009.Suche in Google Scholar
49. Pakdel, E.; Zhao, H.; Wang, J.; Tang, B.; Varley, R. J.; Wang, X. Superhydrophobic and Photocatalytic Self-Cleaning Cotton Fabric Using Flower-Like N-Doped TiO2/PDMS Coating. Cellulose 2021, 28 (13), 8807–8820. https://doi.org/10.1007/s10570-021-04075-3.Suche in Google Scholar
50. Gonçalves, I. M.; Rodrigues, R. O.; Moita, A. S.; Hori, T.; Kaji, H.; Lima, R. A.; Minas, G. Recent Trends of Biomaterials and Biosensors for Organ-on-Chip Platforms. Bioprinting 2022, 26. https://doi.org/10.1016/j.bprint.2022.e00202.Suche in Google Scholar
51. Pattanashetti, N. A.; Hiremath, C.; Naik, S. R.; Heggannavar, G. B.; Kariduraganavar, M. Y. Development of Nanofibrous Scaffolds by Varying the TiO2 Content in Crosslinked PVA for Bone Tissue Engineering. New J. Chem. 2020, 44 (5), 2111–2121. https://doi.org/10.1039/C9NJ05118J.Suche in Google Scholar
52. Pattanashetti, N. A.; Achari, D. D.; Torvi, A. I.; Doddamani, R. V.; Kariduraganavar, M. Y. Development of Multilayered Nanofibrous Scaffolds with PCL and PVA:NaAlg Using Electrospinning Technique for Bone Tissue Regeneration. Materialia 2020, 12, 100826. https://doi.org/10.1016/j.mtla.2020.100826.Suche in Google Scholar
53. Achari, D. D.; Hegde, S. N.; Pattanashetti, N. A.; Kamble, R. R.; Kariduraganavar, M. Y. Development of Zeolite-A Incorporated PVA/CS Nanofibrous Composite Membranes Using the Electrospinning Technique for Pervaporation Dehydration of Water/Tert-butanol. New J. Chem. 2021, 45 (8), 3981–3996. https://doi.org/10.1039/D0NJ04963H.Suche in Google Scholar
54. Rao, A. S.; Rashmi, K. R.; Manjunatha, D. V.; Jayarama, A.; Shastrimath, V. V. D.; Pinto, R. Methanol Crossover Reduction and Power Enhancement of Methanol Fuel Cells with Polyvinyl Alcohol Coated Nafion Membranes. Mater. Today Proc. 2021, 35 (3), 344–351. https://doi.org/10.1016/j.matpr.2020.02.093.Suche in Google Scholar
55. Kuddushi, M.; Kumar, T.; Wu, H.; Chen, S.; Xu, B. B.; Malek, N.; Unsworth, L.; Xu, J.; Zhang, J.; Wang, X.; Zhanget, X. A Semi-Transparent Strong Biomimetic Wound Healing Material: Zinc Oxide and Sodium Alginate Based Bi-layer Nanofiber Membrane. Adv. Compos. Hybrid Mater. 2025, 8, 179. https://doi.org/10.1007/s42114-025-01269-2.Suche in Google Scholar
56. Shim, E.; Noh, J.; Kim, Y. Development and Performance Evaluation of Polytetrafluoroethylene-Membrane-Based Automotive Cabin Air Filter. ACS Omega 2022, 7 (48), 43738–43746. https://doi.org/10.1021/acsomega.2c04758.Suche in Google Scholar PubMed PubMed Central
57. Li, T.-T.; Fan, Y.; Cen, X.; Wang, Y.; Shiu, B.-C.; Ren, H.-T.; Peng, H.-K.; Jiang, Q.; Lou, C.-W.; Lin, J.-H. Polypropylene/Polyvinyl Alcohol/Metal-Organic Framework-Based Melt-Blown Electrospun Composite Membranes for Highly Efficient Filtration of PM 2.5. Nanomaterials 2020, 10 (10), 2025. https://doi.org/10.3390/nano10102025.Suche in Google Scholar PubMed PubMed Central
58. Türkoğlu, G. C.; Khomarloo, N.; Mohsenzadeh, E.; Gospodinova, D. N.; Neznakomova, M.; Salaün, F. PVA-Based Electrospun Materials—A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape—A Review. Int. J. Mol. Sci. 2024, 25 (3), 1668. https://doi.org/10.3390/ijms25031668.Suche in Google Scholar PubMed PubMed Central
59. Fong, H.; Chun, I.; Reneker, D. Beaded Nanofibers Formed During Electrospinning. Polymer 1999, 40 (16), 4585–4592. https://doi.org/10.1016/S0032-3861(99)00068-3.Suche in Google Scholar
60. Chen, L.; Bonaccurso, E. Effects of Surface Wettability and Liquid Viscosity on the Dynamic Wetting of Individual Drops. Phys. Rev. E 2014, 90 (2). https://doi.org/10.1103/PhysRevE.90.022401.Suche in Google Scholar PubMed
61. Darband, G. B.; Aliofkhazraei, M.; Khorsand, S.; Sokhanvar, S.; Kaboli, A. Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arab. J. Chem. 2020, 13 (1), 1763–1802. https://doi.org/10.1016/j.arabjc.2018.01.013.Suche in Google Scholar
62. Li, T. T.; Cen, X. X.; Ren, H. T.; Sun, F.; Lin, Q.; Lou, C. W.; Lin, J. H. One-Step Bark-Like Imitated Polypropylene (PP)/Polycarbonate (PC) Nanofibrous Meltblown Membrane for Efficient Particulate Matter Removal. Polymers 2019, 11, 1307. https://doi.org/10.3390/polym11081307.Suche in Google Scholar PubMed PubMed Central
63. Paxton, N. C.; Woodruff, M. A. Measuring Contact Angles on Hydrophilic Porous Scaffolds by Implementing A Novel Raised Platform Approach: A Technical Note. Polym. Adv. Technol. 2022, 33, 3759–3765. https://doi.org/10.1002/pat.5792.Suche in Google Scholar
64. Fowkes, F.; Zisman, W. Contact Angle, Wettability, and Adhesion. Am. Chem. Soc. 1964, 135475920. https://doi.org/10.1021/BA-1964-0043.Suche in Google Scholar
65. Sadegh-Hassani, F.; Nafchi, A. M. Preparation and Characterization of Bionanocomposite Films Based on potato Starch/Halloysite Nanoclay. Int. J. Biol. Macromol. 2014, 67, 458–462. https://doi.org/10.1016/j.ijbiomac.2014.04.009.Suche in Google Scholar PubMed
66. Abdullah, Z. W.; Dong, Y. Biodegradable and Water Resistant Poly(Vinyl) Alcohol (PVA)/Starch (ST)/Glycerol (GL)/Halloysite Nanotube (HNT) Nanocomposite Films for Sustainable Food Packaging. Front. Mater. 2019, 6 (58). https://doi.org/10.3389/fmats.2019.00058.Suche in Google Scholar
67. Petke, F. D.; Ray, B. R. Temperature Dependence of Contact Angles of Liquids on Polymeric Solids. J. Colloid lnterface Sci. 1969, 31, 216–227. https://doi.org/10.1016/0021-9797(69)90329-4.Suche in Google Scholar
68. Adamson, A. W. Potential Distortion Model for Contact Angle and Spreading II. Temperature Dependent Effects. J. Colloid Interface Sci. 1973, 44, 273–281. https://doi.org/10.1016/0021-9797(73)90219-1.Suche in Google Scholar
69. Schonhorn, H. Dependence of Contact Angles on Temperature: Polar Liquids on Polypropylene. J. Phys. Chem. 1966, 711, 408–4087. https://doi.org/10.1021/j100884a511.Suche in Google Scholar
70. Israelachvili, J. N. Intermolecular and Surface Forces, 4th ed.; Elsevier: Burlington, MA, USA, 2003.Suche in Google Scholar
71. Krista, W. States of Matter: Gases, Liquids and Solid; Chelsea House: New York, NY, USA, 2008.Suche in Google Scholar
72. Pal, L.; Joyce, M. K.; Fleming, P. D. A Simple Method for Calculation of the Permeability Coefficient of Porous Media. Tappi J. 2006, 5 (9), 10–16. https://www.researchgate.net/publication/245065707.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston