Startseite Technik Study on the diffusion behavior between NiAlCoCr nickel-based alloy and high entropy alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study on the diffusion behavior between NiAlCoCr nickel-based alloy and high entropy alloys

  • Jinkun Xiao , Zhanqi E , Na Ta , Juan Chen EMAIL logo und Lijun Zhang
Veröffentlicht/Copyright: 28. Januar 2026
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

By combining solid-state diffusion couple experiments with a numerical inverse method, the interdiffusion coefficients in NiAlCoCr/CoCrFeMn0.2Ni and NiAlCoCr/CoCrCu0.2FeNi diffusion couples were determined at 1,273–1,373 K, and their reliability was verified. The main interdiffusion coefficients on the NiAlCoCr alloy side were greater than those on the high-entropy alloy side at 1,273–1,373 K. The main interdiffusion coefficients followed the trend: D ˜ MnMn Ni > D ˜ CuCu Ni > D ˜ CrCr Ni > D ˜ FeFe Ni > D ˜ CoCo Ni at 1,273 K. Tracer diffusion coefficients were calculated for both the CoCrFeMn0.2Ni/NiAlCoCr and CoCrCu0.2FeNi/NiAlCoCr diffusion couples at 1,273–1,373 K. Furthermore, the composition-dependent diffusion activation energies of the tracer diffusion coefficients were analyzed in the CoCrCu0.2FeNi/NiAlCoCr diffusion couple.


Corresponding authors: Juan Chen, Testing Center, Yangzhou University, 225009 Yangzhou, China, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This work was supported by the National Natural Science Foundation of China (No. 52374372), State Key Laboratory of Powder Metallurgy, China (No. Sklpm-KF-2025029), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 23KJB430042), the Jiangsu Province Large Scientific Instruments Open Sharing Autonomous Research Filing Project (No. TC2023A037, TC2024A047), Special Funds for Self-Made Experimental Instruments and Equipment of Yangzhou University (No. zzyq2024dy01), High-end Talent Support Program of Yangzhou University, Qinglan Project of Yangzhou University, and Lvyangjinfeng Talent program of Yangzhou.

  7. Data availability: Data will be made available upon request.

References

1. Wu, Y.; Zhang, C.; Zhou, J.; Liang, W.; Li, Y. Analysis of the Microstructure and Mechanical Properties During Inertia Friction Welding of the Near- α TA19 Titanium Alloy. Chin. J. Mech. Eng. 2020, 33, 88. https://doi.org/10.1186/s10033-020-00507-6.Suche in Google Scholar

2. Sun, Y.; Denimal, E.; Yuan, J.; Salles, L. Geometric Design of Friction Ring Dampers in Blisks Using Nonlinear Modal Analysis and Kriging Surrogate Model. Struct. Multidiscip. Optim. 2022, 65, 98. https://doi.org/10.1007/s00158-021-03093-w.Suche in Google Scholar

3. Guo, Z.; Ma, T.; Chen, X.; Yang, X.; Tao, J.; Li, J.; Li, W.; Vairis, A. Interfacial Bonding Mechanism of Linear Friction Welded Dissimilar Ti2AlNb-Ti60 Joint: Grain Intergrowth Induced by Combined Effects of Dynamic Recrystallization, Phase Transformation and Elemental Diffusion. J. Mater. Res. Technol. 2023, 24, 5660–5668. https://doi.org/10.1016/j.jmrt.2023.04.184.Suche in Google Scholar

4. Nguyen, L.; Shi, R.; Wang, Y.; Graef, M. Quantification of Rafting of γ’ Precipitates in Ni-Based Superalloys. Acta Mater. 2016, 103, 322–333. https://doi.org/10.1016/j.actamat.2015.09.060.Suche in Google Scholar

5. Chen, J.; Zhang, L. Composition-Dependent Hardness and Young’s Modulus in fcc Ni–X (X=Rh, Ta, W, Re, Os, and Ir) Alloys: Experimental Measurements and CALPHAD Modelling. J. Mater. Res. 2019, 34, 3104–3115. https://doi.org/10.1557/jmr.2019.220.Suche in Google Scholar

6. Yuan, L.; Xiong, J.; Du, Y.; Ren, J.; Shi, J.; Li, J. Microstructure and Mechanical Properties in the TLP Joint of FeCoNiTiAl and Inconel 718 Alloys Using BNi2 Filler. J. Mater. Sci. Technol. 2021, 61, 176–185. https://doi.org/10.1016/j.jmst.2020.05.050.Suche in Google Scholar

7. Liu, D.; Song, Y.; Shi, B.; Zhang, Q.; Song, X.; Niu, H.; Feng, J. Vacuum Brazing of GH99 Superalloy Using Graphene Reinforced BNi-2 Composite Filler. J. Mater. Sci. Technol. 2018, 34, 1843–1850. https://doi.org/10.1016/j.jmst.2018.02.008.Suche in Google Scholar

8. Pouranvari, M.; Ekrami, A.; Kokabi, A. Effect of Bonding Temperature on Microstructure Development During TLP Bonding of a Nickel Base Superalloy. J. Alloys Compd. 2009, 469, 270–275. https://doi.org/10.1016/j.jallcom.2008.01.101.Suche in Google Scholar

9. Guo, W.; Wang, H.; Jia, Q.; Peng, P.; Zhu, Y. Transient Liquid Phase Bonding of Nickel-base Single Crystal Alloy with a Novel Ni-Cr-Co-Mo-W-Ta-Re-B Amorphous Interlayer. High Temp. Mater. Process. 2017, 36, 677–682. https://doi.org/10.1515/htmp-2015-0243.Suche in Google Scholar

10. Chen, J.; Xiao, J.; Zhang, L. Interdiffusion Behaviors Between NiCrFe Alloy and Low- Medium- High-Entropy Alloys. J. Alloys Compd. 2021, 896, 162711. https://doi.org/10.1016/j.jallcom.2021.162711.Suche in Google Scholar

11. Zhong, L.; Liu, Y.; Liu, H.; Wen, S.; Wang, F.; Du, C.; Min, Q.; Premovic, M.; Zheng, Z.; Hu, J.; Du, Y. Diffusivities and Atomic Mobilities in the Ni-rich fcc Ni–Al–Cu Alloys: Experiment and Modelling. Int. J. Mater. Res. 2022, 113 (5), 351–371. https://doi.org/10.1515/ijmr-2021-8426.Suche in Google Scholar

12. Chen, W.; Zhang, L.; Du, Y.; Tang, C.; Huang, B. A Pragmatic Method to Determine the Composition-dependent Interdiffusivities in Ternary Systems by Using a Single Diffusion Couple. Scripta Mater. 2014, 90–91, 53–56. https://doi.org/10.1016/j.scriptamat.2014.07.016.Suche in Google Scholar

13. Chen, W.; Zhong, J.; Zhang, L. An Augmented Numerical Inverse Method for Determining the Composition-dependent Interdiffusivities in Alloy Systems by Using a Single Diffusion Couple. MRS Commun. 2016, 6, 295–300. https://doi.org/10.1557/mrc.2016.21.Suche in Google Scholar

14. Manning, J. Diffusion and the Kirkendall Shift in Binary Alloys. Acta Metall. 1967, 15, 817–826. https://doi.org/10.1016/0001-6160(67)90363-X.Suche in Google Scholar

15. Liu, X.; Lindwall, G.; Gheno, T.; Liu, Z. Thermodynamic Modeling of Al–Co–Cr, Al–Co–Ni, Co–Cr–Ni Ternary Systems Towards a Description for Al–Co–Cr–Ni. Calphad 2016, 52, 125–142. https://doi.org/10.1016/j.calphad.2015.12.007.Suche in Google Scholar

16. Zhang, L.; Du, Y. Thermodynamic Description of the Al–Fe–Ni System over the Whole Composition and Temperature Ranges: Modeling Coupled with Key Experiment. Calphad 2007, 31, 529–540. https://doi.org/10.1016/j.calphad.2007.03.003.Suche in Google Scholar

17. Andersson, J.; Ågren, J. Models for Numerical Treatment of Multicomponent Diffusion in Simple Phases. J. Appl. Phys. 1992, 72, 1350–1355. https://doi.org/10.1063/1.351745.Suche in Google Scholar

18. Zhong, J.; Chen, W.; Zhang, L. HitDIC: A Free-Accessible Code for High-throughput Determination of Interdiffusion Coefficients in Single Solution Phase. Calphad 2018, 60, 177–190. https://doi.org/10.1016/j.calphad.2017.12.004.Suche in Google Scholar

19. Liu, X.; Lindwall, G.; Gheno, T.; Liu, Z. Thermodynamic Modeling of Al–Co–Cr, Al–Co–Ni, Co–Cr–Ni Ternary Systems Towards a Description for Al–Co–Cr–Ni. Calphad 2016, 52, 125–142. https://doi.org/10.1016/j.calphad.2015.12.007.Suche in Google Scholar

20. Li, Q.; Zhong, J.; Tang, Y.; Deng, C.; Zhang, L. Composition-Dependent Interdiffusivity Matrices of Ordered bcc_B2 Phase in Ternary Ni–Al–Ru System at 1273∼ 1473 K. Int. J. Mater. Res. 2022, 113 (5), 372–380. https://doi.org/10.1515/ijmr-2021-8226.Suche in Google Scholar

21. Wang, R.; Chen, W.; Zhong, J.; Zhang, L. Experimental and Numerical Studies on the Sluggish Diffusion in Face Centered Cubic Co-Cr-Cu-Fe-Ni High-Entropy Alloys. J. Mater. Sci. Technol. 2018, 34, 1791–1798. https://doi.org/10.1016/j.jmst.2018.02.003.Suche in Google Scholar

22. Verma, V.; Tripathi, A.; Kulkarni, K. On Interdiffusion in FeNiCoCrMn High Entropy Alloy. J. Phase Equilibria Diffus. 2017, 38, 445–456. https://doi.org/10.1007/s11669-017-0579-y.Suche in Google Scholar

23. Chen, J.; Zhang, Z.; Xiao, J.; Zhang, L. Influence of Al, Cu and Mn Additions on Diffusion Behaviors in CoCrFeNi High-Entropy Alloys. Trans. Nonferrous Met. Soc. China 2025, 35, 184–193. https://doi.org/10.1016/S1003-6326(24)66673-2.Suche in Google Scholar

24. Huang, S.; Guan, H.; Tian, F.; Lu, C.; Xu, Q.; Zhao, J. Tuned Vacancy Diffusion by Mn via Anomalous Friedel Oscillations in NiCoFeCrMn High Entropy Alloys. arxiv 2021, 2111, 00855. https://doi.org/10.48550/arXiv.2111.00855.Suche in Google Scholar

25. Dushman, S.; Langmuir, I. The Diffusion Coefficient in Solids and its Temperature Coefficient. Phys. Rev. 1922, 20, 113–117. https://doi.org/10.1016/B978-1-4831-9914-6.50020-1.Suche in Google Scholar

26. Srikrishnan, V.; Ficalora, P. Diffusion in Transition Metals and Alloys. Metall. Mater. Trans. A 1975, 6 (11), 2095–2102. https://doi.org/10.1007/BF03161836.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ijmr-2025-0045).


Received: 2025-02-11
Accepted: 2025-11-04
Published Online: 2026-01-28

© 2026 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2025-0045/html
Button zum nach oben scrollen