Startseite Mechanical and corrosion characterization of aluminium 6063 composite reinforced with teak wood saw ash
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanical and corrosion characterization of aluminium 6063 composite reinforced with teak wood saw ash

  • Chithambaram Karunanithi , Senthilnathan Natarajan ORCID logo EMAIL logo , Utkrishth Nandan , Narendiranath Babu T , Kavitha KVN und Adhinarayanan Theerthamalai
Veröffentlicht/Copyright: 28. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Aluminium alloy is valued for its recyclability, lightweight, and strength, making it ideal for architectural and vehicle applications, while metal matrix composites further enhance its performance. Teak wood resists decay and insects, making it a durable choice for outdoor furniture and construction. Its high tensile strength allows it to support heavy loads, making it suitable for demanding structural applications. This study investigates the use of the stir casting method to reinforce Al6063 alloy with the teak wood ash powder in varying proportions (2 %, 4 %, and 6 %). Mechanical characterizations were performed including tensile, compression and hardness tests along with a 96-h immersion corrosion test in NaCl solution to determine corrosion rates. Characterization techniques such as X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy were utilized to examine surface morphology and tensile fractography. Among the different proportions, the sample with 2 % reinforcement exhibited the best tensile property of 175 MPa, while the 4 % reinforcement sample showed the highest compression strength of 466 MPa. Micro-CT analysis of porosity revealed that the 2 % reinforced composite exhibited the lowest porosity percentage, measuring 0.45 %, in comparison to the other reinforcement proportions. The corrosion test results revealed that the 2 % reinforcement sample had the lowest corrosion rate at approximately 2.313 × 10−4 (mm/y), whereas the 6 % reinforcement sample had the highest corrosion rate at about 3.161 × 10−3 (mm/y). The modifications in Al6063 with teak wood ash powder lead to grain refinement and the creation of a more consistent and tightly packed microstructure, leading to superior strength.


Corresponding author: Senthilnathan Natarajan, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The authors are grateful to Vellore institute of technology (VIT) and Department of Science and Technology, new Delhi, India for providing financial support to acquire “Micro CT Scan Facility” through “Promotion of University Research and Scientific Excellence (PURSE)” under grant No. SR/PURSE/2020/34 (TPN 56960) and carry out the necessary facilities for this research work.

  7. Data availability: Not applicable.

References

1. Elangovan, R.; Ravikumar, M. M. Performance of Al-Fly Ash Metal Matrix Composites. ARPN J. Eng. Appl. Sci. 2015, 4, 2080–2089.Suche in Google Scholar

2. Bienia, J.; Walczak, M.; Surowska, B.; et al.. Microstructure and Corrosion Behaviour of Aluminum Fly Ash Composites. J. Optoelectron. Adv. Mat. 2003, 5, 493–502.Suche in Google Scholar

3. Kumar, M.; Mishra, A. K. Mechanical Behavior of Al6063/MoS2/Al2O3 Hybrid Metal Matrix Composites. Int. J. Sci. Res. Pub. 2014, 4, 1–4.Suche in Google Scholar

4. Nicklisch, F.; Weller, B.; Hommer, E.; Haberzettl, M. Evaluation of Joining Methods for Novel Timber–Aluminum Composite Profiles for Innovative Louver Windows and Facade Elements. Wood Mat. Sci. Eng. 2018, 14, 201–211; https://doi.org/10.1080/17480272.2018.1491622.Suche in Google Scholar

5. Hemalatha, K.; Venkatachalapathy, V. S. K.; Alagumurthy, N. Processing and Synthesis of Metal Matrix Al6063/Al2O3 Metal Matrix Composite by Stir Casting Process. J. Eng. Res. Appl. 2013, 3, 2248.Suche in Google Scholar

6. Wang, Z.; Yao, L.; Shi, Y.; Zhao, D.; Chen, T. Optimizing the Performance of Window Frames: A Comprehensive Review of Materials in China. Appl. Sci. 2024, 14 (14), 2076–3417; https://doi.org/10.3390/app14146091.Suche in Google Scholar

7. Pakdel, A.; Witecka, A.; Rydzek, G.; Shri, D. N. A.; Nicolosi, V. A Comprehensive Analysis of Extrusion Behavior, Microstructural Evolution, and Mechanical Properties of 6063 Al–B4C Composites Produced by Semisolid Stir Casting. Mater. Sci. Eng., A 2018, 721, 28–37; https://doi.org/10.1016/j.msea.2018.02.080.Suche in Google Scholar

8. Alaneme, K. K.; Bodunrin, M. O. Corrosion Behavior of Alumina Reinforced Aluminium (6063) Metal Matrix Composites. J. Miner. Mat. Char. Eng. 2011, 10, 1153–1165; https://doi.org/10.4236/jmmce.2011.1012088.Suche in Google Scholar

9. Aribo, S.; Fakorede, A.; Ige, O.; Olubambi, P. Erosion-Corrosion Behaviour of Aluminum Alloy 6063 Hybrid Composite. Wear 2017, 376–377, 608–614; https://doi.org/10.1016/j.wear.2017.01.034.Suche in Google Scholar

10. Devanathan, R.; Ravikumar, J.; Boopathi, S.; Christopher Selvam, D.; Anicia, S. Influence in Mechanical Properties of Stir Cast Aluminium (AA6061) Hybrid Metal Matrix Composite (HMMC) with Silicon Carbide, Fly Ash and Coconut Coir Ash Reinforcement. Mat. Today Proc. 2020, 22, 3136–3144; https://doi.org/10.1016/j.matpr.2020.03.450.Suche in Google Scholar

11. Parvinkumar, M. Characterization of Aluminium Hybrid Composite Reinforcement with Teak Wood Ash and Bamboo Ash by Using Stir Casting Process. Int. J. Eng. Res. Technol. 2018, 7, 423–430.Suche in Google Scholar

12. Singh, R.; Podder, D.; Singh, S. Effect of Single, Double and Triple Particle Size SiC and Al2O3 Reinforcement on Wear Properties of AMC Prepared by Stir Casting in Vacuum Mould. Trans. Indian Inst. Met. 2015, 68, 791–797; https://doi.org/10.1007/s12666-015-0512-1.Suche in Google Scholar

13. Bodunrin, M. O.; Alaneme, K. K.; Chown, L. H. Aluminium Matrix Hybrid Composites: A Review of Reinforcement Philosophies; Mechanical, Corrosion and Tribological Characteristics. J. Mat. Res. Technol. 2015, 4 (4), 434–445; https://doi.org/10.1016/j.jmrt.2015.05.003.Suche in Google Scholar

14. Jing, Y.; Lee, J. C.; Moon, W. C.; Yew, M. K.; Chu, M. Y. Mechanical Properties, Permeability and Microstructural Characterisation of Rice Husk Ash Sustainable Concrete with the Addition of Carbon Nanotubes. Heliyon 2024, 10 (12), e32780; https://doi.org/10.1016/j.heliyon.2024.e32780.Suche in Google Scholar PubMed PubMed Central

15. Alaneme, K. K.; Bodunrin, M. O. Mechanical Behaviour of Alumina Reinforced AA 6063 Metal Matrix Composites Developed by Two step-stir Casting Process. Acta Technica Corviniensis Bull. Eng. 2013, 6, 105.Suche in Google Scholar

16. Oladele, I. O.; Akinwekomi, A. D.; Aribo, S.; Aladenika, A. Development of Fibre Reinforced Cementitious Composite for Ceiling Application. J. Miner. Mat. Char. Eng. 2009, 08, 583–590; https://doi.org/10.4236/jmmce.2009.88051.Suche in Google Scholar

17. Adekunle, A. S.; Adeleke, A. A.; Ikubanni, P. P.; Omoniyi, P. O.; Gbadamosi, T. A.; Odusote, J. K. Effect of Copper Addition and Solution Heat Treatment on the Mechanical Properties of Aluminum Alloy Using Formulated bio-Quenchant Oils. Eng. Appl. Sci. Res. 2020, 47, 297–305.Suche in Google Scholar

18. Li, Q.; Matuana, L. M. Effectiveness of Maleated and Acrylic Acid-Functionalized Polyolefin Coupling Agents for HDPE-Wood-Flour Composites. J. Thermoplast. Compos. Mater. 2003, 16, 551–564; https://doi.org/10.1177/089270503033340.Suche in Google Scholar

19. Ashby, M. F.; Easterling, K. E.; Harrysson, R.; Maiti, S. K. The Fracture and Toughness of Woods. Proc. Royal Soc. A Math. Phys. Sci. 1985, 398, 261–280.10.1098/rspa.1985.0034Suche in Google Scholar

20. Owoyemi, J. M.; Zakariya, H. O.; Elegbede, I. O. Sustainable Wood Waste Management in Nigeria. Environ. Socio. Econ. Stud. 2016, 4, 1–9; https://doi.org/10.1515/environ-2016-0012.Suche in Google Scholar

21. Omoniyi, P.; Adekunle, A.; Ibitoye, S.; Olorunpomi, O.; Abolusoro, O. Mechanical and Microstructural Evaluation of Aluminium Matrix Composite Reinforced with Wood Particles. J. King Saudi Univ. Eng. Sci. 2021, 34, 445–450; https://doi.org/10.1016/j.jksues.2021.01.006.Suche in Google Scholar

22. Udoye, N. E.; Fayomi, O. S. I.; Inegbenebor, A. O. Realization of Agro Waste fiber-particulate for Low Cost Aluminium Based Metal Matrix Composite: A Review. IOP Conf. Ser. Mat. Sci. Eng., 2019, 640, 012066; https://doi.org/10.1088/1757-899x/640/1/012066.Suche in Google Scholar

23. Malaret, F. Exact Calculation of Corrosion Rates by the Weight-Loss Method. Experiment. Res. 2022, 3, 13; https://doi.org/10.1017/exp.2022.5.Suche in Google Scholar

24. Usman, A. D.; Victoria, A. F.; Okoro, L. N. Weight Loss Corrosion Study of Some Metals in Acid Medium. J. Adv. Chem. 2016, 11, 3434–3440; https://doi.org/10.24297/jac.v11i2.2211.Suche in Google Scholar

25. Husaini, M.; Usman, B.; Ibrahim, M. B. Evaluation of Corrosion Behaviour of Aluminum in Different Environment. Bayero J. Pure Appl. Sci. 2019, 11, 88; https://doi.org/10.4314/bajopas.v11i1.15s.Suche in Google Scholar

26. Ezuber, H., El-Houd, A., El-Shawesh, F. A Study on the Corrosion Behavior of Aluminum Alloys in Seawater. Mater. Des. 2007, 29, 801–805; https://doi.org/10.1016/j.matdes.2007.01.021.Suche in Google Scholar

27. Omoniyi, P.; Abolusoro, O.; Olorunpomi, O.; Ajiboye, T.; Adewuyi, O.; Aransiola, O.; Akinlabi, E. Corrosion Properties of Aluminum Alloy Reinforced with Wood Particles. J. Compos. Sci. 2022, 6, 189; https://doi.org/10.3390/jcs6070189.Suche in Google Scholar

28. Slotwinski, J.; Moylan, S. Applicability of Existing Materials Testing Standards for Additive Manufacturing Materials. US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014.10.6028/NIST.IR.8005Suche in Google Scholar

29. Raj, R.; Thakur, D. Effect of Particle Size and Volume Fraction on the Strengthening Mechanisms of Boron Carbide Reinforced Aluminum Metal Matrix Composites. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 233, 1345–1356; https://doi.org/10.1177/0954406218771997.Suche in Google Scholar

30. Palani, P. K.; Chithambaram, K.; Rajeswari, B. Optimization of Particle Size of Teak Wood Saw Powder Using Taguchi Method. In Lecture Notes in Mechanical Engineering, Springer Singapore: Singapore, 2021; pp 409–421.10.1007/978-981-15-9809-8_33Suche in Google Scholar

31. Ananiadis, E.; Argyris, K. T.; Matikas, T. E.; Sfikas, A. K.; Karantzalis, A. E. Microstructure and Corrosion Performance of Aluminium Matrix Composites Reinforced with Refractory High-Entropy Alloy Particulates. Appl. Sci. 2021, 11, 1300; https://doi.org/10.3390/app11031300.Suche in Google Scholar

32. Usman, A. D.; Okoro, L. N. A Review: Weight Loss Studies on the Corrosion Behavior of Some Metals in Various Media. Chem. Sci. Rev. Lett. 2015, 4, 17–24.Suche in Google Scholar

Received: 2025-02-06
Accepted: 2025-05-23
Published Online: 2025-10-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2025-0037/pdf
Button zum nach oben scrollen