Startseite High performance of synergistic reinforced natural rubber with kewda fiber (Pandanus odoratissimus) and carbon black: thermal, morphological and statistically optimized mechanical studies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High performance of synergistic reinforced natural rubber with kewda fiber (Pandanus odoratissimus) and carbon black: thermal, morphological and statistically optimized mechanical studies

  • Sumit Kumar , Sohan Lal ORCID logo EMAIL logo , Sanjiv Arora , Parvin Kumar , Shikha Rani , Anjali Verma und Jitendra K. Nagar
Veröffentlicht/Copyright: 31. Oktober 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This work describes the preparation of kewda fiber and carbon black reinforced natural rubber composites by the milling process. The alkali-treated fiber is incorporated in the rubber matrix as 0, 1, 3, and 5 per hundred rubber with varying amounts of carbon black 0, 10, and 15 phr. Response surface methodology was used to examine the optimum tensile (20.83 MPa) and tear strength (56.00 N mm−1) along with elongation at break (2,546 %) at the corresponding composition of 1.50 phr of fiber and 8.94 phr of carbon black, which are higher than that of the neat sample, 12.71 MPa and 24.56 N mm−1. Tensile strength was diminished from 20.83 MPa to 13.19 MPa as the fiber amount was increased beyond 1 phr up to 5 phr. Likewise, the addition of carbon black beyond 10 per hundred rubber causes a decrease in mechanical properties. Scanning electron microscopy and Fourier transform infrared spectroscopy were used to study the morphology and inter-component interactions of composites. The thermal stability of the composites was improved from 320 °C to 335 °C and the maximum weight loss occurs at a higher temperature with the addition of carbon black. Thus, the reinforcement of fiber and carbon black in the rubber matrix improved the mechanical and thermal properties of the final material.


Corresponding author: Sohan Lal, Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India, E-mail:

Acknowledgments

The author is thankful to the funding agency CSIR New Delhi for financial support in this work. Special thanks to the Chairpersons, Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana and Chaudhary Charan Singh University, Meerut, Uttar Pradesh for the needed laboratory facilities and machinery.

  1. Research ethics: Not Applicable.

  2. Informed consent: Not Applicable.

  3. Author contributions: The author has accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author(s) declared no potential competing of interest with respect to the research, authorship, and/or publication of this article.

  6. Research funding: This work was supported by the CSIR New Delhi under the award number 09/105(2018)-EMR-I to Sumit Kumar.

  7. Data availability: All data analysed or generated from this study are included in this research article.

References

1. Tangboriboon, N.; Chaisakrenon, S.; Banchong, A.; Kunanuruksapong, R.; Sirivat, A. Mechanical and Electrical Properties of Alumina/Natural Rubber Composites. J. Elastomers Plast. 2012, 44, 21–41. https://doi.org/10.1177/0095244311416579.Suche in Google Scholar

2. Salleh, S. Z.; Ismail, H.; Ahmad, Z. Properties of Natural Rubber Latex-Compatibilized Natural Rubber/Recycled Chloroprene Rubber Blends. J. Elastomers Plast. 2016, 48, 640–655. https://doi.org/10.1177/0095244315613620.Suche in Google Scholar

3. Dannenberg, E. M. Filler Choices in the Rubber Industry. Rubber Chem. Technol. 2011, 55, 860–880. https://doi.org/10.5254/1.3535905.Suche in Google Scholar

4. Jawaid, M.; Khalil, H. A. Cellulosic/Synthetic Fibre Reinforced Polymer Hybrid Composites: A Review. Carbohydr. Polym. 2011, 86, 1–18. https://doi.org/10.1016/j.carbpol.2011.04.043.Suche in Google Scholar

5. Zhou, Y.; Fan, M.; Chen, L.; Zhuang, J. Lignocellulosic Fibre Mediated Rubber Composites: An Overview. Compos. B Eng. 2015, 76, 180–191. https://doi.org/10.1016/j.compositesb.2015.02.028.Suche in Google Scholar

6. Saba, N.; Tahir, P. M.; Jawaid, M. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites. Polymers 2014, 6, 2247–2273. https://doi.org/10.3390/polym6082247.Suche in Google Scholar

7. Stelescu, M.; Manaila, E.; Craciun, G.; Chirila, C. Development and Characterization of Polymer Eco-Composites Based on Natural Rubber Reinforced with Natural Fibers. Materials 2017, 10, 787–807. https://doi.org/10.3390/ma10070787.Suche in Google Scholar PubMed PubMed Central

8. Setua, D. K.; De, S. K. Short Silk Fiber Reinforced Natural Rubber Composites. Rubber Chem. Technol. 2011, 56, 808–826. https://doi.org/10.5254/1.3538156.Suche in Google Scholar

9. De, D.; De, D.; Adhikari, B. The Effect of Grass Fiber Filler on Curing Characteristics and Mechanical Properties of Natural Rubber. Polym. Adv. Technol. 2004, 15, 708–715. https://doi.org/10.1002/pat.530.Suche in Google Scholar

10. Balaji, A.; Karthikeyan, B.; Sundar, R. C. Bagasse Fiber – The Future Biocomposite Material: A Review. Int. J. Chemtech. Res. 2014, 7, 223–233. https://www.researchgate.net/publication/270453697_Bagasse_Fiber_-_The_Future_Biocomposite_Material_A_Review.Suche in Google Scholar

11. Kumar, S.; Lal, S.; Jagdeva, G.; Aroroa, S.; Kumar, P.; Soni, R. K.; Kumar, H.; Kumar, S.; Panchal, S. Performance-Based Natural Rubber Composites Reinforced with Jute Fibers and Nano-Silica: Thermal, Morphological, and Mechanical Studies with Statistical Optimization. Iran. Polym. J. 2023, 32, 609–619. https://doi.org/10.1007/s13726-023-01148-x.Suche in Google Scholar

12. Ismail, H.; Jaffri, R. M.; Rozman, H. D. Oil Palm Wood Flour Filled Natural Rubber Composites: Fatigue and Hysteresis Behaviour. Polym. Int. 2000, 49, 618–622. https://doi.org/10.1002/1097-0126(200006)49:6%3C618::AID-PI418%3E3.0.CO;2-%23.10.1002/1097-0126(200006)49:6<618::AID-PI418>3.0.CO;2-#Suche in Google Scholar

13. Ayrilmiş, N.; Yurttas, E.; Avsar, E.; Kahraman, M.; Özdemir, F.; Palanisamy, S.; Yetiş, F.; Gurusamy, M.; Al-Farraj, S. Properties of Plastic Composites Filled with Giant Reed Flour and Magnesium Oxide Nanoparticles. BioResources 2025, 20 (2), 2671–2686; https://doi.org/10.15376/biores.20.2.2670-2686.Suche in Google Scholar

14. Palaniappan, M.; Palanisamy, S.; Khan, R. ; H. A. N.; Tadepalli, S.; Murugesan, T. M.; Santulli, C. Synthesis and Suitability Characterization of Microcrystalline Cellulose from Citrus X Sinensis Sweet Orange Peel Fruit Waste-based Biomass for Polymer Composite Applications. J. Polym. Res. 2024, 31 (4), 105. https://doi.org/10.1007/s10965-024-03946-0.Suche in Google Scholar

15. Manickaraj, K.; Karthik, A.; Palanisamy, S.; Jayam, M.; Ali, S. K.; Sankar, S. L.; Al-Farraj, S. A. Improving Mechanical Performance of Hybrid Polymer Composites: Incorporating Banana Stem Leaf and Jute Fibers with Tamarind Shell Powder. BioResources 2025, 20 (1); https://doi.org/10.15376/biores.20.1.1998-2025.Suche in Google Scholar

16. Manaila, E.; Stelescu, M. D.; Doroftei, F. Polymeric Composites Based on Natural Rubber and Hemp Fibers. Iran. Polym. J. 2015, 24, 135–148. https://doi.org/10.1007/s13726-015-0307-6.Suche in Google Scholar

17. Geethamma, V. G.; Kalaprasad, G.; Groeninckx, G.; Thomas, S. Dynamic Mechanical Behavior of Short Coir Fiber Reinforced Natural Rubber Composites. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1499–1506. https://doi.org/10.1016/j.compositesa.2005.03.004Suche in Google Scholar

18. Datta, J.; Włoch, M. Preparation, Morphology and Properties of Natural Rubber Composites Filled with Untreated Short Jute Fibres. Polym. Bull. 2017, 74, 763–782. https://doi.org/10.1007/s00289-016-1744-x.Suche in Google Scholar

19. Masłowski, M.; Miedzianowska, J.; Strzelec, K. Natural Rubber Biocomposites Containing Corn, Barley and Wheat Straw. Polym. Test. 2017, 63, 84–91. https://doi.org/10.1016/j.polymertesting.2017.08.003.Suche in Google Scholar

20. Lopattananon, N.; Panawarangkul, K.; Sahakaro, K.; Ellis, B. Performance of Pineapple Leaf Fiber-Natural Rubber Composites: The Effect of Fiber Surface Treatments. J. Appl. Polym. Sci. 2006, 102, 1974–1984. https://doi.org/10.1002/app.24584.Suche in Google Scholar

21. Xie, Y.; Hill, C. A. S.; Xiao, Z.; Militz, H.; Mai, C. Silane Coupling Agents Used for Natural Fiber/Polymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. https://doi.org/10.1016/j.compositesa.2010.03.005.Suche in Google Scholar

22. Adekunle, K. F. Surface Treatments of Natural Fibres – A Review: Part 1. Open J. Polym. Chem 2015, 05, 41–46. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=58642&#abstract.10.4236/ojpchem.2015.53005Suche in Google Scholar

23. Narayana, V. L.; Rao, L. B. A Brief Review on the Effect of Alkali Treatment on Mechanical Properties of Various Natural Fiber Reinforced Polymer Composites. Mater. Today Proc. 2021, 44, 1988–1994. https://doi.org/10.1016/j.matpr.2020.12.117.Suche in Google Scholar

24. Jacob, M.; Thomas, S.; Varughese, K. T. Mechanical Properties of Sisal/Oil Palm Hybrid Fiber Reinforced Natural Rubber Composites. Compos. Sci. Technol. 2004, 64, 955–965. https://doi.org/10.1016/S0266-3538(03)00261-6.Suche in Google Scholar

25. Roy, K.; Debnath, S. C.; Potiyaraj, P. A Critical Review on the Utilization of Various Reinforcement Modifiers in Filled Rubber Composites. J. Elastomer Plast. 2020, 52, 167–193. https://doi.org/10.1177/0095244319835869.Suche in Google Scholar

26. Roy, K.; Debnath, S. C.; Das, A.; Heinrich, G.; Potiyaraj, P. Exploring the Synergistic Effect of Short Jute Fiber and Nanoclay on the Mechanical, Dynamic Mechanical and Thermal Properties of Natural Rubber Composites. Polym. Test. 2018, 67, 487–493. https://doi.org/10.1016/j.polymertesting.2018.03.032.Suche in Google Scholar

27. Thaptong, P.; Sirisinha, C.; Thepsuwan, U.; Sae-Oui, P. Properties of Natural Rubber Reinforced by Carbon Black-based Hybrid Fillers. Polym. Plast. Technol. Eng. 2014, 53 (8), 818–823. https://doi.org/10.1080/03602559.2014.886047.Suche in Google Scholar

28. Abdul Salim, Z. A. S.; Hassan, A.; Ismail, H. A Review on Hybrid Fillers in Rubber Composites. Polym. Plast. Technol. Eng. 2018, 57 (6), 523–539. https://doi.org/10.1080/03602559.2017.1329432.Suche in Google Scholar

29. Salaeh, S.; Nakason, C. Influence of Modified Natural Rubber and Structure of Carbon Black on Properties of Natural Rubber Compounds. Polym. Compos. 2012, 33, 489–500. https://doi.org/10.1002/pc.22169.Suche in Google Scholar

30. Du, X.; Zhang, Y.; Pan, X.; Meng, F.; You, J.; Wang, Z. Preparation and Properties of Modified Porous Starch/Carbon Black/Natural Rubber Composites. Compos. B Eng. 2019, 156, 1–7. https://doi.org/10.1016/j.compositesb.2018.08.033.Suche in Google Scholar

31. Aruchamy, K.; Karuppusamy, M.; Krishnakumar, S.; Palanisamy, S.; Jayamani, M.; Sureshkumar, K.; Ali, S. K.; Al-Farraj, S. A. Enhancement of Mechanical Properties of Hybrid Polymer Composites Using Palmyra Palm and Coconut Sheath Fibers: The Role of Tamarind Shell Powder. BioResources 2025, 20 (1), 698–724; https://doi.org/10.15376/biores.20.1.698-724.Suche in Google Scholar

32. Palaniappan, M.; Palanisamy, S.; Murugesan, T. M.; Alrasheedi, N. H.; Ataya, S.; Tadepalli, S.; Elfar, A. A. Novel Ficus retusa L. Aerial Root Fiber: a Sustainable Alternative for Synthetic Fibres in Polymer Composites Reinforcement. Biomass Convers. Biorefin 2025, 15 (5), 7585–7601. https://doi.org/10.1007/s13399-024-05495-4.Suche in Google Scholar

33. Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019.Suche in Google Scholar PubMed

34. Sareena, C.; Ramesan, M. T.; Purushothaman, E. Utilization of Peanut Shell Powder as a Novel Filler in Natural Rubber. J. Appl. Polym. Sci. 2011, 125, 2322–2334. https://doi.org/10.1002/app.36468.Suche in Google Scholar

35. Fei, Z.; Long, C.; Qingyan, P.; Shugao, Z. Influence of Carbon Black on Crosslink Density of Natural Rubber. J. Macromol. Sci. Phys. 2012, 51, 1208–1217. https://doi.org/10.1080/00222348.2012.664494.Suche in Google Scholar

36. Das, S.; Das, P.; Das, N. C.; Das, D. A Review of Emerging Bio-based Constituents for Natural Fiber Polymer Composites. J. Text. Inst. 2024, 115 (12), 2554–2580. https://doi.org/10.1080/00405000.2023.2300592.Suche in Google Scholar

37. Abdollahiparsa, H.; Shahmirzaloo, A.; Blok, R.; Teuffel, P. Influence of Moisture Absorption on Tensile and Compressive Properties of Natural Fiber-Reinforced Thermoplastic Composites. Polym. Plast. Technol. Mater 2023, 62 (16), 2138–2142. https://doi.org/10.1080/25740881.2023.2250845.Suche in Google Scholar

38. Das, N. C.; Khastgir, D.; Chaki, T. K.; Chakraborty, A. Electromagnetic Interference Shielding Effectiveness of Carbon Black and Carbon Fibre Filled EVA and NR Based Composites. Compos. Part A Appl. Sci. Manuf. 2000, 31 (10), 1069–1081. https://doi.org/10.1016/S1359-835X(00)00064-6.Suche in Google Scholar

39. Zhu, S.; Wu, S.; Fu, Y.; Guo, S. Prediction of particle-reinforced Composite Material Properties Based on an Improved Halpin–Tsai Model. AIP Adv. 2024, 14 (4), 045339. https://doi.org/10.1063/5.0206774.Suche in Google Scholar

40. Jiang, Z.; He, G.; Duan, Y.; Jiang, Y.; Lin, Y.; Zhu, Y.; Wang, J. Contrasting Effects of Various Factors upon the Properties of Foam Ceramics and the Mechanisms of Crystalline Phase Reconstruction and Microstructure Regulation. Ceram. Int. 2024, 50 (12), 21645–21657. https://doi.org/10.1016/j.ceramint.2024.03.277.Suche in Google Scholar

41. Qu, L.; Huang, G.; Zhang, P.; Nie, Y.; Weng, G.; Wu, J. Synergistic Reinforcement of Nanoclay and Carbon Black in Natural Rubber. Polym. Int. 2010, 59, 1397–1402. https://doi.org/10.1002/pi.2881.Suche in Google Scholar

42. Huang, G.; Zhang, L.; Chu, S.; Xie, Y.; Chen, Y. A Highly Ductile Carbon Material Made of Triangle Rings: a Study of Machine Learning. Appl. Phys. Lett. 2024, 124, 043103. https://doi.org/10.1063/5.0189906.Suche in Google Scholar

43. Jianhui, Z.; Yaopeng, Hu.; Qingchun, Li.; Changcheng, Y. Mechanical Performance Simulation and Optimal Design of Carbon Fiber Composite B-Piller. Model. Simul. Mater. Sci. Eng. 2024, 32, 065022; https://doi.org/10.1088/1361-651X/ad6202.Suche in Google Scholar

44. Zhang, J.; Zuo, W.; Tian, Y.; Chen, L.; Yin, L.; Zhang, J. Sulfur Transformation During Microwave and Conventional Pyrolysis of Sewage Sludge. Environ. Sci. Technol. 2017, 51, 709–717. https://doi.org/10.1021/acs.est.6b03784.Suche in Google Scholar PubMed

Received: 2025-01-06
Accepted: 2025-05-15
Published Online: 2025-10-31

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2025-0010/html?lang=de
Button zum nach oben scrollen