Abstract
In this study, WO3 thin films deposited by spray pyrolysis were evaluated for their structural and surface morphology and optimized according to the parameters of this technique for applications such as hydrophilic uses, which need their own particular surface characteristic. The deposition solution contains tungsten hexachloride (WCl6), as the precursor, and hydrazine monohydrate (N2H4·H2O), as the solvent. To the best of our knowledge, no report has shown the presence of hydrazine monohydrate as a solvent for the WCl6 precursor. By increasing the annealing temperature, the crystallite structure and surface morphology for the mentioned application were improved, particularly at the concentration of 0.02 M and annealing temperature of 500 °C, the surface converts from nanogranule into nanoplate. Moreover, at this concentration and annealing temperature intense and narrow peaks were observed around 10.9° and 21.8° in X-ray diffraction pattern, which have not been shown in any other report.
Acknowledgments
The authors gratefully acknowledge the research department of University of Guilan.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The author have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Rozati, S. M.; Moghadamziabari, S. A. Mater. Chem. Phys. 2022, 292, 126789; https://doi.org/10.1016/j.matchemphys.2022.126789.Search in Google Scholar
2. Regragui, M.; Addou, M.; Outzourhit, A.; Idrissi, E. E.; Kachouane, A.; Bougrine, A. Sol. Energy Mater. Sol. Cells 2003, 77, 341; https://doi.org/10.1016/S0927-0248(02)00353-7.Search in Google Scholar
3. Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F. S. Renewable Sustainable Energy Rev. 2013, 26, 353; https://doi.org/10.1016/j.rser.2013.05.038.Search in Google Scholar
4. Feng, W.; Zou, L.; Gao, G.; Wu, G.; Shen, J.; Li, W. Sol. Energy Mater. Sol. Cells 2016, 144, 316; https://doi.org/10.1016/j.solmat.2015.09.029.Search in Google Scholar
5. Vernardou, D.; Drosos, H.; Spanakis, E.; Koudoumas, E.; Katsarakis, N.; Pemble, M. E. Electrochim. Acta 2012, 65, 185; https://doi.org/10.1016/j.electacta.2012.01.035.Search in Google Scholar
6. Louloudakis, D.; Vernardou, D.; Papadimitropoulos, G.; Davazoglou, D.; Koudoumas, E. Adv. Mater. Lett. 2018, 9, 578; https://doi.org/10.5185/amlett.2018.2013.Search in Google Scholar
7. Maho, A.; Nayak, S.; Gillissen, F.; Cloots, R.; Rougier, A. Coatings 2023, 13 (11), 1879; https://doi.org/10.3390/coatings13111879.Search in Google Scholar
8. Siciliano, T.; Tepore, A.; Micocci, G.; Serra, A.; Manno, D.; Filippo, E. Sens. Actuators, B 2008, 133, 321; https://doi.org/10.1016/j.snb.2008.02.028.Search in Google Scholar
9. Ghimbeu, C. M.; Lumbreras, M.; Siadat, M.; Schoonman, J. Mater. Sci. Semicond. Process. 2010, 13 (1), 1; https://doi.org/10.1016/j.mssp.2010.01.001.Search in Google Scholar
10. Grbić, B.; Radić, N.; Stojadinović, S.; Vasilić, R.; Dohčević-Mitrović, Z.; Šaponjić, Z.; Stefanov, P. Surf. Coat. Technol. 2014, 258, 763; https://doi.org/10.1016/j.surfcoat.2014.07.082.Search in Google Scholar
11. Mohite, S. V.; Rajpure, K. Y. Mater. Sci. Eng., B 2015, 200, 78; https://doi.org/10.1016/j.mseb.2015.06.009.Search in Google Scholar
12. Ng, K. K. Complete Guide to Semiconductor Devices, Vol. 2; John Wiley & Sons Inc.: New York, 2002.Search in Google Scholar
13. Miyauchi, M.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Chem. Mater. 2002, 14 (6), 2812; https://doi.org/10.1021/cm020076p.Search in Google Scholar
14. Simchi, H.; McCandless, B. E.; Meng, T.; Shafarman, W. N. J. Alloys Compd. 2014, 617, 609; https://doi.org/10.1016/j.jallcom.2014.08.047.Search in Google Scholar
15. Sivakumar, R.; Raj, A. M. E.; Subramanian, B.; Jayachandran, M.; Trivedi, D. C.; Sanjeeviraja, C. Mater. Res. Bull. 2004, 39, 1479; https://doi.org/10.1016/j.materresbull.2004.04.023.Search in Google Scholar
16. Enesca, A.; Enache, C.; Duta, A.; Schoonman, J. J. Eur. Ceram. Soc. 2006, 26 (4–5), 571; https://doi.org/10.1016/j.jeurceramsoc.2005.07.048.Search in Google Scholar
17. Patil, P. S.; Nikam, S. B.; Kadam, L. D. Mater. Chem. Phys. 2001, 69, 77; https://doi.org/10.1016/S0254-0584(00)00382-5.Search in Google Scholar
18. Tanner, R. E.; Szekeres, A.; Gogova, D.; Gesheva, K. Appl. Surf. Sci. 2003, 218, 162; https://doi.org/10.1016/S0169-4332(03)00575-0.Search in Google Scholar
19. Sivakumar, R.; Gopalakrishnan, R.; Jayachandran, M.; Sanjeeviraja, C. Opt. Mater. 2007, 29, 679; https://doi.org/10.1016/j.optmat.2005.11.017.Search in Google Scholar
20. Behbahani, M. A.; Ranjbar, M.; Kameli, P.; Salamati, H. Sens. Actuators, B 2013, 188, 127; https://doi.org/10.1016/j.snb.2013.06.097.Search in Google Scholar
21. Ismail, M.; Bousselmi, L.; Zahraa, O. J. Photochem. Photobiol., A 2011, 222 (2–3), 314; https://doi.org/10.1016/j.jphotochem.2011.07.001.Search in Google Scholar
22. Vijayalakshmi, R.; Jayachandran, M.; Sanjeeviraja, C. Curr. Appl. Phys. 2003, 3, 171; https://doi.org/10.1016/S1567-1739(02)00196-7.Search in Google Scholar
23. Bertus, L. M.; Faure, C.; Danine, A.; Labrugère, C.; Campet, G.; Rougier, A.; Duta, A. Mater. Chem. Phys. 2013, 140, 49; https://doi.org/10.1016/j.matchemphys.2013.02.047.Search in Google Scholar
24. Bertus, L. M.; Enesca, A.; Duta, A. Thin Solid Films 2012, 520, 4282; https://doi.org/10.1016/j.tsf.2012.02.052.Search in Google Scholar
25. Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds; John Wiley & Sons: Canada, 1986.Search in Google Scholar
26. Regragui, M.; Addou, M.; Outzourhit, A.; Bernede, J. C.; El Idrissi, E.; Benseddik, E.; Kachouane, A. Thin Solid Films 2000, 358, 40; https://doi.org/10.1016/S0040-6090(99)00682-3.Search in Google Scholar
27. Mukherjee, R.; Kushwaha, A.; Sahay, P. P. Electron. Mater. Lett. 2014, 10, 401; https://doi.org/10.1007/S13391-013-3221-0.Search in Google Scholar
28. Adelifard, M.; Salamatizadeh, R.; Ketabi, S. A. J. Mater. Sci.: Mater. Electron. 2016, 27, 5243; https://doi.org/10.1007/s10854-016-4420-x.Search in Google Scholar
29. Wenzel, R. N. Ind. Eng. Chem. 1936, 28 (8), 988; https://doi.org/10.1021/ie50320a024.Search in Google Scholar
30. Azimirad, R.; Naseri, N.; Akhavan, O.; Moshfegh, A. Z. J. Phys. D:Appl. Phys. 2007, 40, 1134; https://doi.org/10.1088/0022-3727/40/4/034.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
- Compressive properties and energy absorption of ordered porous aluminum with strengthening structures
- Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites
- Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity
- Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
- Compressive properties and energy absorption of ordered porous aluminum with strengthening structures
- Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites
- Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity
- Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application
- News
- DGM – Deutsche Gesellschaft für Materialkunde