Abstract
Crystal structure, surface morphology, dielectric and electrical characterisation of manganese and gadolinium co-modified barium strontium titanate (BST) composite is reported. In the present work, Mn and Gd co-modified BST, i.e. Ba0.76(Gd0.5Mn0.5)0.04 Sr0.2TiO3 composite is synthesised by sol-gel reaction technique. The crystallographic phase formation of calcined powder is confirmed by the X-ray diffraction technique. Unit cell parameters are extracted from Rietveld refinement of the XRD data using X’Pert High-score plus software. Average crystallite size and lattice strain are estimated from full-width half maxima of diffraction peaks following Scherrer’s equation and Haldar–Wagner’s method. The dielectric and electrical investigations are carried out by measuring the dielectric constant on the sintered pellets as a function of temperature from room temperature to 300 °C at the AC field frequencies of 100 Hz – 1 MHz.
Acknowledgement
The authors acknowledge Prof. S. Srinath and the School of Physics, University of Hyderabad for providing the characterisation facilities.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Prachi Bhanwala: Sample Preparation, Preeti Saroha: Sample Preparation, Preeti: Dielectric Characterization, Md. Ahamad Mohiddon: Conceptualization and Manuscript writing, Anshu Gaur: Data Analysis, Manuscript editing.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Dr. Anshu acknowledges DST (Ref. No.: SR/WOS-A/ET-38/2018) for providing the funds during this work.
-
Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
1. Sebald, G.; Seveyrat, L.; Guyomar, D.; Lebrun, L.; Guiffard, B.; Pruvost, S. Electrocaloric and Pyroelectric Properties of 0.75Pb(Mg1∕3Nb2∕3)O3–0.25PbTiO3 Single Crystals. J. of Appl. Phys. 2006, 100 (12), 124112 1–7; https://doi.org/10.1063/1.2407271.Suche in Google Scholar
2. Akcay, G.; Alpay, S. P.; Rossetti, G. A.; Scott, J. F. Influence of Mechanical Boundary Conditions on the Electrocaloric Properties of Ferroelectric Thin Films. J. of Appl. Phys. 2008, 103 (2), 024104 1–7; https://doi.org/10.1063/1.2831222.Suche in Google Scholar
3. Maiwa, H. Temperature Dependences of the Electromechanical and Electrocaloric Properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 Ceramics. Jap. J. Appl. Phys. 2017, 56 (10), 0–8. http://doi.org/10.7567/JJAP.56.10PC05.10.7567/JJAP.56.10PC05Suche in Google Scholar
4. Khardazi, S.; Zaitouni, H.; Asbani, B.; Mezzane, D.; Amjoud, M.; Choukri, E.; Terenchuk, S.; Erramli, A.; Gogou, Y.; Structural, Dielectric, Ferroelectric and Electrical Properties of Lead-free Ba0.9Sr0.1Ti0.9Sn0.1O3 Ceramic Prepared by Sol-Gel Method. Mater. Today: Proc. 2021, 51(6), 2059–2065. http://doi.org/10.1016/j.matpr.2021.08.302.Suche in Google Scholar
5. Urban, C.; Bennett, S. P.; Schuller, I. K. Hydrostatic Pressure Mapping of Barium Titanate Phase Transitions with Quenched FeRh. Sci. Rep. 2020, 10, 6312 1–6.http://doi.org/10.1038/s41598-020-63358-0.10.1038/s41598-020-63358-0Suche in Google Scholar PubMed PubMed Central
6. Sahoo, S.; Polisetty, S.; Duan, C.; Jaswal, S. S.; Tsymbal, E. Y.; Binek, C.; Ferroelectric Control of Magnetism in BaTiO3/Fe Heterostructures via Interface Strain Coupling. Phys. Rev. B 2007, 76,092108 1–4. http://doi.org/10.1103/PhysRevB.76.092108.10.1103/PhysRevB.76.092108Suche in Google Scholar
7. Crossley, S.; Mathur, N. D.; Moya, X. New Developments in Caloric Materials for Cooling Applications. AIP Adv. 2015, 5, 067153. http://doi.org/10.1063/1.4922871.10.1063/1.4922871Suche in Google Scholar
8. Ahamad Mohiddon, Md.; Goel, P.; Yadav, K. L.; Kumar, M.; Yadav, P. K. Electrical and Dielectric Properties of Double Doped BaTiO3. Ind. J. of Eng. Mat. Sci. 2007, 14 (1), 64.10.1109/TDEI.2007.302889Suche in Google Scholar
9. Olhero, S. M.; Kaushal, A.; Ferreira, J. M. F. Fabrication of Barium Strontium Titanate (Ba0.6Sr0.4TiO3) 3D Microcomponents from Aqueous Suspensions. J. Ameri. Cer. Soc. 2014, 97 (3), 725–732. http://doi.org/10.1111/jace.12756.10.1111/jace.12756Suche in Google Scholar
10. Gao, Y.; Shvartsman, V. V.; Gautam, D.; Winterer, M.; Lupascu, D. C. Nanocrystalline Barium Strontium Titanate Ceramics Synthesized via the Organosol Route and Spark Plasma Sintering. J. Amer. Cer. Soc. 2014, 97 (7), 2139–2146; https://doi.org/10.1111/jace.12933.Suche in Google Scholar
11. Khardazi, S.; Zaitouni, H.; Asbani, B.; Mezzane, D.; Amjoud, M.; Choukri, E.; Terenchuk, S.; Erramli, A.; Gagou, Y. Structural, Dielectric, Ferroelectric and Electrical Properties of Leadfree Ba0.9Sr0.1Ti0.9Sn0.1O3 Ceramic Prepared by Sol-Gel Method, Mater. Today: Proc. 2022, 51 (6), pp. 2059–2065. https://doi.org/10.1016/j.matpr.2021.08.302.10.1016/j.matpr.2021.08.302Suche in Google Scholar
12. Djemel, I.; Kriaa, I.; Abdelmoula, N.; Khemakhem, H. The Effect of Low Sn Doping on the Dielectric and Electrocaloric Properties of Ferroelectric Ceramics Ba0.95Sr0.05Ti0.95Zr0.05O3. J. Alloys Comp. 2017, 720, 284–288; https://doi.org/10.1016/j.jallcom.2017.05.284.Suche in Google Scholar
13. Xu, Z.; Qiang, H. Enhanced Electrocaloric Effect in Mn + Y Co-doped BST Ceramics Near Room Temperature. Mat. Lett 2017, 191, 57–60. http://doi.org/10.1016/j.matlet.2016.12.120.10.1016/j.matlet.2016.12.120Suche in Google Scholar
14. Xu, Z.; Wang, J.; Chen, Y. Improved Electrocaloric Effect of Ba0.7Sr0.3TiO3 Ceramics Doped with B and Mn. J. Solgel. Techn 2023, 107, 483–489. http://doi.org/10.1007/s10971-023-06135-5.10.1007/s10971-023-06135-5Suche in Google Scholar
15. Zhou, Y.; Yang, D.; Jiang, G. Effect of Yttrium Doping on Microstructure and Temperature Resistance Characteristics of Barium Strontium Titanate Ferroelectric Ceramics. In IEEE International Conference on High Voltage Engineering and Applications (ICHVE). Elsevier: Chongqing, China, 2022, pp. 1–4.10.1109/ICHVE53725.2022.9961754Suche in Google Scholar
16. Tai, B.; Yang, J.; Wang, J.; Peng, F.; Li, X.; Peng, X. Y.; Yao, Y. Grain Size Engineered (Ba,Sr)(Zr,Ti)O3 Ceramics with Excellent Energy Storage Properties for High-Voltage Pulsed Capacitors. Ceramics Intern 2022, 48 (12), 17046–17052. http://doi.org/10.1016/j.ceramint.2022.02.260.10.1016/j.ceramint.2022.02.260Suche in Google Scholar
17. Karthikeyan, S.; Thirunavukkarasu, P.; Surendhiran, S.; Khadar, Y. A. S.; Balamurugan, A.; Gobinath, B. Structural , Thermal and Optoelectrical Properties of Pure and Gadolinium Doped Barium Strontium Titanate for SSC Applications. Mat. Today: Proc. 2021, 47 (4), 970–977. http://doi.org/10.1016/j.matpr.2021.05.217.10.1016/j.matpr.2021.05.217Suche in Google Scholar
18. Liu, X. Q.; Chen, T. T.; Sen Fu, M.; Wu, Y. J.; Chen, X. M. Electrocaloric Effects in Spark Plasma Sintered Ba0.7Sr0.3TiO3-Based Ceramics: Effects of Domain Sizes and Phase Constitution. Ceram. Int. 2014, 40 (7), 11269–11276. http://doi.org/10.1016/j.ceramint.2014.03.175.10.1016/j.ceramint.2014.03.175Suche in Google Scholar
19. Zhou, L.; Vilarinho, P. M.; Baptista, J. L. Dielectric Properties of Bismuth Doped BaxSrxTiO3 Ceramics, J. Euro. Cer. Soc. 2001, 21 (4), 531–534. http://doi.org/10.1016/S0955-2219(00)00239-9.10.1016/S0955-2219(00)00239-9Suche in Google Scholar
20. Holzwarth, U.; Gibson, N. The Scherrer Equation versus the Debye–Scherrer Equation. Nature Nanotechn 2011, 6, 534. http://doi.org/10.1038/nnano.2011.145.10.1038/nnano.2011.145Suche in Google Scholar PubMed
21. Chen, M.; Xu, Z.; Chu, R.; Liu, Y.; Shao, L.; Li, W.; Gong, S.; Li, G. Polymorphic Phase Transition and Enhanced Piezoelectric Properties in (Ba0.9Ca0.1)(TixSnx)O3 Lead-free Ceramics. Mat. Lett 2013, 97, 86–89. http://doi.org/10.1016/j.matlet.2012.12.067.10.1016/j.matlet.2012.12.067Suche in Google Scholar
22. Kumar, S.; Sahil; Gaur, A.; Mohiddon, Md. A.; Preeti Structural and Electrical Characterization of Iron and Lithium Co-Doped Barium Strontium Titanate Composite. Ferroelectrics 2023, 617 (1), 11–17. http://doi.org/10.1080/00150193.2023.2271129.10.1080/00150193.2023.2271129Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston