The influences of sintering temperature on structural, morphological, optical properties, and magnetoresistance of tin oxide (SnO2) nanomaterials
Abstract
During the last few years, nanomaterials have sparked a lot of attention due to their properties. Therefore the fundamental goal of this paper, we analyze the impact of sintering temperature (450–750) °C on structural, optical properties, and magnetoresistance of tin oxide nanomaterial via the co-precipitation method. X-ray diffraction and RAMAN reveal a tetragonal crystal structure without the presence of any impurities. Further, we found the growth of crystallinity with higher sintering temperatures of pellets. The morphology studies reveal the inhomogeneity of particles and they are closely packed together. UV–Vis spectroscopy results show that tuning the bandgap suggested the improvement of optical properties in tin oxide in the role of optoelectronic devices, sensors, etc. We found a reduction in resistivity (ρ) and an increment in magnetoresistance as the sintering temperature of pellets rises.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Dr. Balak Das- Review and editing Supervision, and investigation. Archana Verma- Conceptualization, writing original draft preparation, data curation, methodology. Kartikey Shriram- Editing the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: No conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Ye, Q.; Zhang, X.; Yao, R.; Luo, D.; Liu, X.; Zou, W.; Guo, C.; Xu, Z.; Ning, H.; Peng, J. Cryst 2021, 11 (12), 1479; https://doi.org/10.3390/cryst11121479.Suche in Google Scholar
2. Karmaoui, M.; Jorge, A. B.; McMillan, F. P.; Aliev, A. E.; Pullar, C. R.; Labrincha, J. A.; Tobaldi, D. M. ACS Omega 2018, 3 (10), 13227–13238; https://doi.org/10.1021/acsomega.8b02122.Suche in Google Scholar PubMed PubMed Central
3. Kharbanda, J.; Priya, R. Mater. Today 2022, 68, 916–921. https://doi.org/10.1016/j.matpr.2022.07.131.Suche in Google Scholar
4. Kima, P. S.; Choib, Y. M.; Choi, C. H. Mater. Res. Bull. 2016, 74, 85–89. https://doi.org/10.1016/j.materresbull.2015.10.024.Suche in Google Scholar
5. Masuda, Y. Sens. Actuators: B. Chem. 2022, 364, 131876. https://doi.org/10.1016/j.snb.2022.131876.Suche in Google Scholar
6. Deng, K.; Chen, Q.; Li, L. Adv. Funct. Mater. 2020, 30 (46), 2004209; https://doi.org/10.1002/adfm.202004209Suche in Google Scholar
7. Wu, S. D.; Han, Y. C.; Wang, Y. S.; Wu, N. L.; Rusakova, I. A. Mater. Lett. 2002, 53 (3), 155–159; https://doi.org/10.1016/s0167-577x-01-00468-2.Suche in Google Scholar
8. Lou, W. X.; Li, M. C.; Archer, L. A. Adv. Mater. 2009, 21, 2536–2539; https://doi.org/10.1002/adma.200803439Suche in Google Scholar
9. Pan, X.; Zhang, T.; Lu, Q.; Wang, W.; Ye, Z. RSC Adv. 2019, 9 (64), 37201–37206; https://doi.org/10.1039/c9ra03999f.Suche in Google Scholar PubMed PubMed Central
10. Acarbas, O.; Suvacı, E.; Dogan, A. Ceram. Int. 2007, 33 (4), 537–542; https://doi.org/10.1016/j.ceramint.2005.10.024.Suche in Google Scholar
11. Ayeshamariam, A.; Vidhya, V. S.; Sivaranjani, S.; Bououdina, M.; Samy, M. P. R.; Jayachandran, P. J. Nanoelectron. Optoelectron 2013, 8 (3), 273–280; https://doi.org/10.1166/jno.2013.1471.Suche in Google Scholar
12. Tazikeh, S.; Akbari, A.; Talebi, A.; Talebi, E. Mater. Sci. Pol. 2014, 32, 98; https://doi.org/10.2478/s13536-013-0164-y.Suche in Google Scholar
13. Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Murugan, R.; Yuvakkumar, R.; Ravi, G. J. Electron. Mater. 2019, 48 (4); 2183–2194. https://doi.org/10.1007/s11664-019-07061-5.Suche in Google Scholar
14. Lu, G.; Huebner, L. K.; Ocola, L. E.; Josifovska, M. G. J. Chen: J. Nanomater. 2006, 1–7; https://doi.org/10.1155/JNM/2006/60828Suche in Google Scholar
15. Pan, Z.; Ao, S.; Jia, J. Appl. Mech. Mater. 2014, 670, 26–39; https://doi.org/10.4028/www.scientific.net/AMM.670-671.26Suche in Google Scholar
16. Pi, S.; Zhang, X.; Cui, H.; Chen, D.; Zhang, G.; Xiao, S. J. Tang: Front. Chem. 2019, 7, 476; https://doi.org/10.3389/fchem.2019.00476.Suche in Google Scholar PubMed PubMed Central
17. Tao, Y.; Pescarmona, P. P. Catalysts 2018, 8 (5), 212; https://doi.org/10.3390/catal8050212.Suche in Google Scholar
18. Billik, P.; Čaplovičová, M. Pow. Technol. 2009, 191 (3), 235–239; https://doi.org/10.1016/j.powtec.2008.10.017.Suche in Google Scholar
19. Nehru, L. C.; Swaminathan, V.; Sanjeeviraja, C. Am. J. Mater. Sci. 2012, 2 (2), 6–10; https://doi.org/10.5923/j.materials.20120202.02Suche in Google Scholar
20. Arularasu, M. V.; Anbarasu, M.; Poovaragan, S.; Sundaram, R.; Kanimozhi, K.; Magdalane, C. M.,; Kaviyarasu, K.; Thema, F. T.; Letsholathebe, D.; Mola, G. T.; Maaza, M. J. Nanosci. Nanotechnol. 2018, 18 (5), 3511–3517; https://doi.org/10.1166/jnn.2018.14658Suche in Google Scholar PubMed
21. Naz, S.; Javid, I.; Konwar, S.; Surana, K.; Singh, K. P.; Sahni, M.; Bhattacharya, B. SN Appl. Sci. 2020, 2, 975. https://doi.org/10.1007/s42452-020-2812-2.Suche in Google Scholar
22. Cukrov, M. L.; McCormick, G. P.; Galatsis, K.; Wlodarski, W. Sens. Actuator 2001, 77 (1–2), 491–495; https://doi.org/10.1016/s0925-4005-01-00751-1.Suche in Google Scholar
23. Reddy, N. N. K.; Akkera, H. S.; Sekhar, M. C.; Park, S. H. Appl. Phys. A 2017, 123 (761), 1–7; https://doi.org/10.1007/s00339-017-1391-6.Suche in Google Scholar
24. Awasthi, R. R.; Das, B. J. Aust. Ceram. Soc. 2019, 56 (1), 243–250. https://doi.org/10.1007/s41779-019-00381-zSuche in Google Scholar
25. Kurian, M.; Kunjachan, C. Int. Nano Lett. 2014, 4, 73–80; https://doi.org/10.1007/s40089-014-0122-7Suche in Google Scholar
26. Deshpande, S.; Patil, S., Kuchibhatla, S.; Seal, S. Appl. Phys. Lett. 2005, 87 (13), 133113. https://doi.org/10.1063/1.2061873Suche in Google Scholar
27. Sebayang, K.; Aryanto, D.; Simbolon, S.; Kurniawan, C.; Hulu, F. S.; Sudiro, T.; Ginting, M.; Sebayang, P. Mater. Sci. Eng. 2018, 309 (1), 012119; https://doi.org/10.1088/1757-899X/309/1/012119Suche in Google Scholar
28. https://www.researchgate.net/post/Why-do-the-XRD-diffraction-peaks-shift-towards-larger-angle-higher-theta-instead-of-smaller-angle/5537a6d8d11b8b8f3a8b45a0/citation/download.Suche in Google Scholar
29. Gupta, S.; Yadav, B. C.; Dwivedi, K. P.; Das, B. Mater. Res. Bull. 2013, 48 (9), 3315–3322. https://doi.org/10.1016/j.materresbull.2013.05.001Suche in Google Scholar
30. Awasthi, R. R.; Asokan, K.; Das, B. Appl. Phys. A 2019, 125, 338. https://doi.org/10.1007/s00339-019-Ǻ2560-610.1007/s00339-019-2560-6Suche in Google Scholar
31. Makuła, P.; Pacia, M.; Macyk, W. J. Phys.Chem. Lett. 9 (23), 2018, 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.Suche in Google Scholar PubMed
32. Akazawa, H. Ceram. Inter. 2022, 489 (1), 624–631. https://doi.org/10.1016/j.ceramint.2021.09.141.Suche in Google Scholar
33. Singh, M.; Taele, M. B.; Goyal, M. Chin. J. Phy. 2021, 70, 26–36. https://doi.org/10.1016/j.cjph.2021.01.001.Suche in Google Scholar
34. Anuar, M. F.; Fen, Y. W.; Zaid, M. H. M.; Omar, N. A. S.; Khaidir, R. E. M. Mater. 2020, 13 (11), 2555. https://doi.org/10.3390/ma13112555.Suche in Google Scholar PubMed PubMed Central
35. Ito, M. J. Mol. Spectrosc. 1960, 4 (1–6), 106–124; https://doi.org/10.1016/0022-2852-60-90072-2.Suche in Google Scholar
36. Chetri, P.; Saikia, B.; Choudhury, A. J. Appl. Phys. 2013, 113 (23), 233514; https://doi.org/10.1063/1.4811374.Suche in Google Scholar
37. Deluca, M.; Hu, H.; Popov, M. N.; Spitaler, J.; Dieing, T. Commun. Mater. 2023, 4 (1), 78. https://doi.org/10.1038/s43246-023-00400-4.Suche in Google Scholar
38. Koniakhin, S. V.; Utesov, O. I.; Yashenkin, A. Diam. Relat. Mater. 2024, 146, 111182. https://doi.org/10.1016/j.diamond.2024.111182.Suche in Google Scholar
39. Yuan, J. J.; Wen, G. H.; Fan, Y. B.; Zhang, C. P.; Zhao, Q.; Yin, Z.; Zhang, X. K.; Yu, H. J.; Zhu, X. R.; Xie, Y. M. Physica B 2015, 477, 29–32. https://doi.org/10.1016/j.physb.2015.04.002.Suche in Google Scholar
40. Dauzhenka, T. A.; Ksenevich, V. K.; Bashmakov, I. A. J. Galibert: Phys. Rev. B 2011, 83 (16), 165309; https://doi.org/10.1103/PhysRevB.83.165309.Suche in Google Scholar
41. Juraić, K.; Čulo, M.; Rapljenović, Ž.; Plaisier, R.; Siketić, Z.; Pavić, L.; Bohač, M.; Hodzic, A.; Gracin, D. Mater 2020, 13 (22), 5182; https://doi.org/10.3390/ma13225182.Suche in Google Scholar PubMed PubMed Central
42. Mousavi, M.; Yazdi, S. T.; Mohagheghi, M. M. B. Solid State Commun. 2019, 298, 1136. https://doi.org/10.1016/j.ssc.2019.05.012.Suche in Google Scholar
43. Mohagheghi, M. M. B.; Yazdi, S. T.; Mousavi, M. Appl. Phys. A 2018, 124 (274), 1–6. https://doi.org/10.1007/s00339-018-1685-3.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston