Startseite The influences of sintering temperature on structural, morphological, optical properties, and magnetoresistance of tin oxide (SnO2) nanomaterials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The influences of sintering temperature on structural, morphological, optical properties, and magnetoresistance of tin oxide (SnO2) nanomaterials

  • Archana Verma ORCID logo EMAIL logo , Kartikey Shriram und Balak Das
Veröffentlicht/Copyright: 22. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

During the last few years, nanomaterials have sparked a lot of attention due to their properties. Therefore the fundamental goal of this paper, we analyze the impact of sintering temperature (450–750) °C on structural, optical properties, and magnetoresistance of tin oxide nanomaterial via the co-precipitation method. X-ray diffraction and RAMAN reveal a tetragonal crystal structure without the presence of any impurities. Further, we found the growth of crystallinity with higher sintering temperatures of pellets. The morphology studies reveal the inhomogeneity of particles and they are closely packed together. UV–Vis spectroscopy results show that tuning the bandgap suggested the improvement of optical properties in tin oxide in the role of optoelectronic devices, sensors, etc. We found a reduction in resistivity (ρ) and an increment in magnetoresistance as the sintering temperature of pellets rises.


Corresponding author: Archana Verma, Department of Physics, University of Lucknow, Babuganj, Hasanganj, Lucknow, 226007, Uttar Pradesh, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Dr. Balak Das- Review and editing Supervision, and investigation. Archana Verma- Conceptualization, writing original draft preparation, data curation, methodology. Kartikey Shriram- Editing the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: No conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Ye, Q.; Zhang, X.; Yao, R.; Luo, D.; Liu, X.; Zou, W.; Guo, C.; Xu, Z.; Ning, H.; Peng, J. Cryst 2021, 11 (12), 1479; https://doi.org/10.3390/cryst11121479.Suche in Google Scholar

2. Karmaoui, M.; Jorge, A. B.; McMillan, F. P.; Aliev, A. E.; Pullar, C. R.; Labrincha, J. A.; Tobaldi, D. M. ACS Omega 2018, 3 (10), 13227–13238; https://doi.org/10.1021/acsomega.8b02122.Suche in Google Scholar PubMed PubMed Central

3. Kharbanda, J.; Priya, R. Mater. Today 2022, 68, 916–921. https://doi.org/10.1016/j.matpr.2022.07.131.Suche in Google Scholar

4. Kima, P. S.; Choib, Y. M.; Choi, C. H. Mater. Res. Bull. 2016, 74, 85–89. https://doi.org/10.1016/j.materresbull.2015.10.024.Suche in Google Scholar

5. Masuda, Y. Sens. Actuators: B. Chem. 2022, 364, 131876. https://doi.org/10.1016/j.snb.2022.131876.Suche in Google Scholar

6. Deng, K.; Chen, Q.; Li, L. Adv. Funct. Mater. 2020, 30 (46), 2004209; https://doi.org/10.1002/adfm.202004209Suche in Google Scholar

7. Wu, S. D.; Han, Y. C.; Wang, Y. S.; Wu, N. L.; Rusakova, I. A. Mater. Lett. 2002, 53 (3), 155–159; https://doi.org/10.1016/s0167-577x-01-00468-2.Suche in Google Scholar

8. Lou, W. X.; Li, M. C.; Archer, L. A. Adv. Mater. 2009, 21, 2536–2539; https://doi.org/10.1002/adma.200803439Suche in Google Scholar

9. Pan, X.; Zhang, T.; Lu, Q.; Wang, W.; Ye, Z. RSC Adv. 2019, 9 (64), 37201–37206; https://doi.org/10.1039/c9ra03999f.Suche in Google Scholar PubMed PubMed Central

10. Acarbas, O.; Suvacı, E.; Dogan, A. Ceram. Int. 2007, 33 (4), 537–542; https://doi.org/10.1016/j.ceramint.2005.10.024.Suche in Google Scholar

11. Ayeshamariam, A.; Vidhya, V. S.; Sivaranjani, S.; Bououdina, M.; Samy, M. P. R.; Jayachandran, P. J. Nanoelectron. Optoelectron 2013, 8 (3), 273–280; https://doi.org/10.1166/jno.2013.1471.Suche in Google Scholar

12. Tazikeh, S.; Akbari, A.; Talebi, A.; Talebi, E. Mater. Sci. Pol. 2014, 32, 98; https://doi.org/10.2478/s13536-013-0164-y.Suche in Google Scholar

13. Asaithambi, S.; Sakthivel, P.; Karuppaiah, M.; Murugan, R.; Yuvakkumar, R.; Ravi, G. J. Electron. Mater. 2019, 48 (4); 2183–2194. https://doi.org/10.1007/s11664-019-07061-5.Suche in Google Scholar

14. Lu, G.; Huebner, L. K.; Ocola, L. E.; Josifovska, M. G. J. Chen: J. Nanomater. 2006, 1–7; https://doi.org/10.1155/JNM/2006/60828Suche in Google Scholar

15. Pan, Z.; Ao, S.; Jia, J. Appl. Mech. Mater. 2014, 670, 26–39; https://doi.org/10.4028/www.scientific.net/AMM.670-671.26Suche in Google Scholar

16. Pi, S.; Zhang, X.; Cui, H.; Chen, D.; Zhang, G.; Xiao, S. J. Tang: Front. Chem. 2019, 7, 476; https://doi.org/10.3389/fchem.2019.00476.Suche in Google Scholar PubMed PubMed Central

17. Tao, Y.; Pescarmona, P. P. Catalysts 2018, 8 (5), 212; https://doi.org/10.3390/catal8050212.Suche in Google Scholar

18. Billik, P.; Čaplovičová, M. Pow. Technol. 2009, 191 (3), 235–239; https://doi.org/10.1016/j.powtec.2008.10.017.Suche in Google Scholar

19. Nehru, L. C.; Swaminathan, V.; Sanjeeviraja, C. Am. J. Mater. Sci. 2012, 2 (2), 6–10; https://doi.org/10.5923/j.materials.20120202.02Suche in Google Scholar

20. Arularasu, M. V.; Anbarasu, M.; Poovaragan, S.; Sundaram, R.; Kanimozhi, K.; Magdalane, C. M.,; Kaviyarasu, K.; Thema, F. T.; Letsholathebe, D.; Mola, G. T.; Maaza, M. J. Nanosci. Nanotechnol. 2018, 18 (5), 3511–3517; https://doi.org/10.1166/jnn.2018.14658Suche in Google Scholar PubMed

21. Naz, S.; Javid, I.; Konwar, S.; Surana, K.; Singh, K. P.; Sahni, M.; Bhattacharya, B. SN Appl. Sci. 2020, 2, 975. https://doi.org/10.1007/s42452-020-2812-2.Suche in Google Scholar

22. Cukrov, M. L.; McCormick, G. P.; Galatsis, K.; Wlodarski, W. Sens. Actuator 2001, 77 (1–2), 491–495; https://doi.org/10.1016/s0925-4005-01-00751-1.Suche in Google Scholar

23. Reddy, N. N. K.; Akkera, H. S.; Sekhar, M. C.; Park, S. H. Appl. Phys. A 2017, 123 (761), 1–7; https://doi.org/10.1007/s00339-017-1391-6.Suche in Google Scholar

24. Awasthi, R. R.; Das, B. J. Aust. Ceram. Soc. 2019, 56 (1), 243–250. https://doi.org/10.1007/s41779-019-00381-zSuche in Google Scholar

25. Kurian, M.; Kunjachan, C. Int. Nano Lett. 2014, 4, 73–80; https://doi.org/10.1007/s40089-014-0122-7Suche in Google Scholar

26. Deshpande, S.; Patil, S., Kuchibhatla, S.; Seal, S. Appl. Phys. Lett. 2005, 87 (13), 133113. https://doi.org/10.1063/1.2061873Suche in Google Scholar

27. Sebayang, K.; Aryanto, D.; Simbolon, S.; Kurniawan, C.; Hulu, F. S.; Sudiro, T.; Ginting, M.; Sebayang, P. Mater. Sci. Eng. 2018, 309 (1), 012119; https://doi.org/10.1088/1757-899X/309/1/012119Suche in Google Scholar

28. https://www.researchgate.net/post/Why-do-the-XRD-diffraction-peaks-shift-towards-larger-angle-higher-theta-instead-of-smaller-angle/5537a6d8d11b8b8f3a8b45a0/citation/download.Suche in Google Scholar

29. Gupta, S.; Yadav, B. C.; Dwivedi, K. P.; Das, B. Mater. Res. Bull. 2013, 48 (9), 3315–3322. https://doi.org/10.1016/j.materresbull.2013.05.001Suche in Google Scholar

30. Awasthi, R. R.; Asokan, K.; Das, B. Appl. Phys. A 2019, 125, 338. https://doi.org/10.1007/s00339-019-Ǻ2560-610.1007/s00339-019-2560-6Suche in Google Scholar

31. Makuła, P.; Pacia, M.; Macyk, W. J. Phys.Chem. Lett. 9 (23), 2018, 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.Suche in Google Scholar PubMed

32. Akazawa, H. Ceram. Inter. 2022, 489 (1), 624–631. https://doi.org/10.1016/j.ceramint.2021.09.141.Suche in Google Scholar

33. Singh, M.; Taele, M. B.; Goyal, M. Chin. J. Phy. 2021, 70, 26–36. https://doi.org/10.1016/j.cjph.2021.01.001.Suche in Google Scholar

34. Anuar, M. F.; Fen, Y. W.; Zaid, M. H. M.; Omar, N. A. S.; Khaidir, R. E. M. Mater. 2020, 13 (11), 2555. https://doi.org/10.3390/ma13112555.Suche in Google Scholar PubMed PubMed Central

35. Ito, M. J. Mol. Spectrosc. 1960, 4 (1–6), 106–124; https://doi.org/10.1016/0022-2852-60-90072-2.Suche in Google Scholar

36. Chetri, P.; Saikia, B.; Choudhury, A. J. Appl. Phys. 2013, 113 (23), 233514; https://doi.org/10.1063/1.4811374.Suche in Google Scholar

37. Deluca, M.; Hu, H.; Popov, M. N.; Spitaler, J.; Dieing, T. Commun. Mater. 2023, 4 (1), 78. https://doi.org/10.1038/s43246-023-00400-4.Suche in Google Scholar

38. Koniakhin, S. V.; Utesov, O. I.; Yashenkin, A. Diam. Relat. Mater. 2024, 146, 111182. https://doi.org/10.1016/j.diamond.2024.111182.Suche in Google Scholar

39. Yuan, J. J.; Wen, G. H.; Fan, Y. B.; Zhang, C. P.; Zhao, Q.; Yin, Z.; Zhang, X. K.; Yu, H. J.; Zhu, X. R.; Xie, Y. M. Physica B 2015, 477, 29–32. https://doi.org/10.1016/j.physb.2015.04.002.Suche in Google Scholar

40. Dauzhenka, T. A.; Ksenevich, V. K.; Bashmakov, I. A. J. Galibert: Phys. Rev. B 2011, 83 (16), 165309; https://doi.org/10.1103/PhysRevB.83.165309.Suche in Google Scholar

41. Juraić, K.; Čulo, M.; Rapljenović, Ž.; Plaisier, R.; Siketić, Z.; Pavić, L.; Bohač, M.; Hodzic, A.; Gracin, D. Mater 2020, 13 (22), 5182; https://doi.org/10.3390/ma13225182.Suche in Google Scholar PubMed PubMed Central

42. Mousavi, M.; Yazdi, S. T.; Mohagheghi, M. M. B. Solid State Commun. 2019, 298, 1136. https://doi.org/10.1016/j.ssc.2019.05.012.Suche in Google Scholar

43. Mohagheghi, M. M. B.; Yazdi, S. T.; Mousavi, M. Appl. Phys. A 2018, 124 (274), 1–6. https://doi.org/10.1007/s00339-018-1685-3.Suche in Google Scholar

Received: 2024-01-06
Accepted: 2025-06-29
Published Online: 2025-08-22

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0010/html
Button zum nach oben scrollen