Home Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity
Article
Licensed
Unlicensed Requires Authentication

Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity

  • Pankaj Kumar , Vedpriya Arya , Ashwani Kumar and Naveen Thakur EMAIL logo
Published/Copyright: January 22, 2025
Become an author with De Gruyter Brill

Abstract

Unique magnetically recoverable copper/zinc-doped hematite nanoparticles, were synthesized by using a co-precipitation process with polymer polyvenylpyrodine and an aqueous extract of the Azadirachta indica plant serving as the capping and stabilizing agent. Hematite nanoparticles are the most stable form of iron oxide at room temperature, the presented work concentrated on the effects and comparisons of chemically and green synthesized doped materials that serve a dual role as reducing agents: supporting biomedical application and catalyzing environmental cleanup through photocatalysis. The prepared nanoparticles were characterized using X-ray diffraction, UV–vis spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, vibrating-sample magnetometry, scanning electron microscopy, and transmission electron microscopy techniques to examine the produced material. The average grain size for doped hematite nanoparticles was found to be 13.33–19.90 nm based on X-ray diffraction measurements. The Fourier-transform infrared spectroscopy spectrum demonstrates the function of the biomolecules in the extract in capping the nanoparticles. The ferrimagnetic character of the produced nanoparticles demonstrated by the Vibrating-sample magnetometer investigation showed dependence at 300 K. According to the phytochemical study, A. indica has components that enhance its photocatalytic and antioxidant activity. In comparison, chemical/green synthesized doped hematite nanoparticles demonstrated noticeably higher photocatalytic activity for the oxidative breakdown of hazardous organic dyes Rhodamine blue and Congo red. Additionally, the photocatalyst displayed outstanding stability for the reaction. Radical scavenger assays 2,2-diphenyl-1-picrylhydrazyl and 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) were used to measure antioxidant capability. Based on the assay, the bran and husk fractions displayed higher levels of antioxidant activity. This research is regarded as a novel step in the production of doped hematite nanoparticles with particular photocatalytic and biological characteristics for wide use in environmental, and agricultural areas.


Corresponding author: Naveen Thakur, Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India; and Centre for Nano-Science and Technology, Career Point University, Hamirpur, Himachal Pradesh 176041, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Palansooriya, N. K.; Yi, Y.; Yiu, T. F.; Binoy, S.; Deyi, H.; Xinde, C.; Erik, M.; Jörg, R.; Ki-Hyun, K.; Yong, O. S. Occurrence of Contaminants in Drinking Water Sources and the Potential of Biochar for Water Quality Improvement: A Review. Crit. Rev. Environ. Sci. Technol. 2020, 50 (6), 549–611. https://doi.org/10.1080/10643389.2019.1629803.Search in Google Scholar

2. Thakur, N.; Kumar, P.; Tapwal, A.; Jeet, K. Degradation of Malachite Green Dye by Capping Polyvinylpyrrolidone and Azadirachta indica in Hematite Phase of Ni Doped Fe2O3 Nanoparticles via Co-precipitation Method. Nanofabrication 2023, 8. https://doi.org/10.37819/nanofab.008.304.Search in Google Scholar

3. Bohac, P.; Budzak, S.; Planetova, V.; Klement, R.; Bujdak, J. Adsorption-Induced Fluorescence of Pseudo Isocyanine Monomers in Systems with Layered Silicates. J. Phys. Chem. C 2022, 126, 17255–17265. https://doi.org/10.1021/acs.jpcc.2c03497.Search in Google Scholar

4. Omri, K.; Alonizan, N.; Abumousa, R. A.; Alqahtani, M.; Ghrib, T. Fabrication and Enhanced UV-Light Photocatalytic Performance of Mn2O3/Dy2O3 Nanocomposites. J. Mater. Sci.: Mater. Electron. 2023, 34, 432. https://doi.org/10.1007/s10854-023-09875-w.Search in Google Scholar

5. Remache, W.; Ramos, D. R.; Mammeri, L.; Boucheloukh, H.; Marín, Z.; Belaidi, S.; Sehili, T.; Santaballa, J. A.; Canle, M. An Efficient Green Photo-Fenton System for the Degradation of Organic Pollutants. Kinetics of Propranolol Removal from Different Water Matrices. J. Water Process Eng. 2022, 46, 102514. https://doi.org/10.1016/j.jwpe.2021.102514.Search in Google Scholar

6. Omri, K.; Alonizan, N. Enhanced Photocatalytic Performance and Impact of Annealing Temperature on TiO2/Gd2O3: Fe Composite. J. Mater. Sci.: Mater. Electron. 2022, 33, 15448–15459. https://doi.org/10.1007/s10854-022-08451-y.Search in Google Scholar

7. Sangare, S.; Belaidi, S.; Saoudi, M.; Bouaziz, C.; Seraghni, N.; Sehili, T. Iron-TiO2 Pillared Clay Nanocomposites: Eco-Friendly Solutions for Photocatalytic Removal of Organic and Pathogen Contaminants. Inorg. Chem. Commun. 2024, 160, 111923. https://doi.org/10.1016/j.inoche.2023.111923.Search in Google Scholar

8. Belaidi, S.; Sangare, S.; Felahi, A.; Remache, W.; Belattar, S.; Sehili, T. Synthesis of Metal and Non-metal Doping Hematite Nanoparticles for Adsorption and Photocatalytic Degradation of Acid Red 14 in Aqueous Solutions. Int. J. Environ. Anal. Chem. 2023, 103 (6), 1245–1258. https://doi.org/10.1080/03067319.2021.1873307.Search in Google Scholar

9. Kumar, P.; Thakur, N.; Kumar, K.; Kumar, S.; Dutt, A.; Thakur, V. K.; Gutiérrez-Rodelo, C.; Thakur, P.; Navarrete, A.; Thakur, N. Catalyzing Innovation: Exploring Iron Oxide Nanoparticles-Origins, Advancements, and Future Application Horizons. Coord. Chem. Rev. 2024, 507, 215750. https://doi.org/10.1016/j.ccr.2024.215750.Search in Google Scholar

10. Ahmed, B.; Solanki, B.; Zaidi, A.; Khan, M. S.; Musarrat, J. Bacterial Toxicity of Biomimetic Green Zinc Oxide Nana Antibiotic: Insights into ZnO NPs Uptake and Nana Colloid–Bacteria Interface. Toxicol. Res. 2019, 8, 246–261. https://doi.org/10.1039/c8tx00267c.Search in Google Scholar PubMed PubMed Central

11. Ahmad, S.; Maqbool, A.; Srivastava, A.; Gogol, S. Biological Detail and Therapeutic Effect of Azadirachta indica (Neem Tree) Products-A Review. J. Evid. Based Med. Healthc. 2019, 6, 1607–1612; https://doi.org/10.18410/jebmh/2019/324.Search in Google Scholar

12. Endris, Y. A.; Mekonnen, K. D. Formulation of Neem Leaf and Croton Seed Essential Oils as a Natural Insecticide Tested on Mosquitoes and Cockroaches. ACS Omega 2023, 8, 15052–15061. https://doi.org/10.1021/acsomega.2c08026.Search in Google Scholar PubMed PubMed Central

13. Baby, A. R.; Freire, T. B.; Marques, G. D. A.; Rijo, P.; Lima, F. V.; Carvalho, J. C. M. D.; Rojas, J.; Magalhães, W. V.; Velasco, M. V. R.; Morocho-Jácome, A. L. Azadirachta indica (Neem) as a Potential Natural Active for Dermocosmetic and Topical Products: a Narrative Review. Cosm 2022, 9, 58; https://doi.org/10.3390/cosmetics9030058.Search in Google Scholar

14. Rana, A.; Kumar, P.; Thakur, N.; Kumar, S.; Kumar, K.; Thakur, N. Investigation of Photocatalytic, Antibacterial and Antioxidant Properties of Environmentally Green Synthesized Zinc Oxide and Yttrium Doped Zinc Oxide Nanoparticles. Nano-Struct. Nano-Objects 2024, 38, 101188. https://doi.org/10.1016/j.nanoso.2024.101188.Search in Google Scholar

15. Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A. G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78; https://doi.org/10.3390/oxygen2020006.Search in Google Scholar

16. Leonel, A. G.; Mansur, A. A.; Mansur, H. S. Advanced Functional Nanostructures Based on Magnetic Iron Oxide Nanomaterials for Water Remediation: a Review. Water Res. 2021, 190, 116693. https://doi.org/10.1016/j.watres.2020.116693.Search in Google Scholar PubMed

17. Zhang, G. D.; Wu, Z. H.; Xia, Q. Q.; Qu, Y. X.; Pan, H. T.; Hu, W. J.; Zhao, L.; Cao, K.; Chen, E. Y.; Yuan, Z.; Gao, J. F.; Mai, Y. W.; Tang, L. C. Ultrafast Flame-Induced Pyrolysis of Poly (Dimethylsiloxane) Foam Materials toward Exceptional Superhydrophobic Surfaces and Reliable Mechanical Robustness. ACS Appl. Mater. Interfaces 2021, 13, 23161–23172. https://doi.org/10.1021/acsami.1c03272.Search in Google Scholar PubMed

18. Thakur, S.; Kumar, P.; Thakur, N.; Kumar, K.; Jeet, K.; Kumar, S.; Thakur, N. Photocatalytic, Antibacterial and Antioxidant Potential of Spheroidal Shape Chromium and Yttrium Doped Cobalt Oxide Nanoparticles: A Green Approach. J. Indian Chem. Soc. 2024, 101199. https://doi.org/10.1016/j.jics.2024.101199.Search in Google Scholar

19. Ahire, J.; Bhanage, B. M. Solar Energy-Controlled Shape Selective Synthesis of Zinc Oxide Nanomaterials and its Catalytic Application in Synthesis of Glycerol Carbonate. J. Solid State Chem. 2021, 295, 121927. https://doi.org/10.1016/j.jssc.2020.121927.Search in Google Scholar

20. Krsmanović Whiffen, R.; Montone, A.; Pietrelli, L.; Pilloni, L. On Tailoring Co-precipitation Synthesis to Maximize Production Yield of Nanocrystalline Wurtzite ZnS. Nanomat 2021, 11, 715. https://doi.org/10.3390/nano11030715.Search in Google Scholar PubMed PubMed Central

21. Kumar, P.; Kumar, S.; Thakur, N. Azadirachta indica and Polyvinylpyrrolidone Encapsulated Fe2O3 Nanoparticles to Enhance the Photocatalytic and Antioxidant Activity. Inorg. Chem. Commun. 2023, 155, 111084. https://doi.org/10.1016/j.inoche.2023.111084.Search in Google Scholar

22. Hwang, J. B.; Dhandole, L. K.; Anushkkaran, P.; Chae, W. S.; Choi, S. H.; Lee, H. H.; Jang, J. S. Microwave-assisted Surface Attachment of Aluminum Ions on In Situ Diluted Titanium-Doped Hematite Photoanodes for Efficient Photoelectrochemical Water-Splitting. Sustain. Energy Fuels. 2022, 6, 3056–3067. https://doi.org/10.1039/D2SE00459C.Search in Google Scholar

23. Popov, N.; Krehula, S.; Ristić, M.; Kuzmann, E.; Homonnay, Z.; Bošković, M.; Stanković, D.; Kubuki, S.; Musić, S. Influence of Cr Doping on the Structural, Magnetic, Optical and Photocatalytic Properties of α-Fe2O3 Nanorods. J. Phys. Chem. Solids 2021, 148, 109699. https://doi.org/10.1016/j.jpcs.2020.109699.Search in Google Scholar

24. Liu, P.; Wang, Q.; Jung, H.; Tang, Y. Speciation, Distribution, and Mobility of Hazardous Trace Elements in Coal Fly Ash: Insights from Cr, Ni, and Cu. Energ. Fuel. 2020, 34, 14333–14343. https://doi.org/10.1021/acs.energyfuels.0c02164.Search in Google Scholar

25. Kumar, P.; Thakur, N.; Tapwal, A.; Kumar, S. Enhancing the Adsorption Capacity of Green/chemical Synthesized Hematite Nanoparticles by Copper Doping: Removal of Toxic Congo Red Dye and Antioxidant Activity. Appl. Nanosci. 2023, 1–14. https://doi.org/10.1007/s13204-023-02943-x.Search in Google Scholar

26. Khan, N.; Ali, A.; Qadir, A.; Ali, A.; Warsi, M. H.; Tahir, A.; Ali, A. GC-MS Analysis and Antioxidant Activity of Wrightia Tinctoria R. Br. Leaf Extract. J. AOAC Int. 2021, 104, 1415–1419. https://doi.org/10.1093/jaoacint/qsab054.Search in Google Scholar PubMed

27. Al Jumayi, H. A.; Allam, A. Y.; El-Beltagy, A. E. D.; Algarni, E. H.; Mahmoud, S. F.; El Halim Kandil, A. A. Bioactive Compound, Antioxidant, and Radical Scavenging Activity of Some Plant Aqueous Extracts for Enhancing Shelf Life of Cold-Stored Rabbit Meat. Antioxidants 2022, 11, 1056; https://doi.org/10.3390/antiox11061056.Search in Google Scholar PubMed PubMed Central

28. Rufus, A.; Sreeju, N.; Philip, D. Size Tunable Biosynthesis and Luminescence Quenching of Nanostructured Hematite (α-Fe2O3) for Catalytic Degradation of Organic Pollutants. J. Phys. Chem. Solids 2019, 124, 221–234; https://doi.org/10.1016/j.jpcs.2018.09.026.Search in Google Scholar

29. Sagadevan, S.; Sivasankaran, R. P.; Lett, J. A.; Fatimah, I.; Weldegebrieal, G. K.; Léonard, E.; Le, M. V.; Soga, T. Evaluation of Photocatalytic Activity and Electrochemical Properties of Hematite Nanoparticles. Symmetry 2023, 15, 1139; https://doi.org/10.3390/sym15061139.Search in Google Scholar

30. Kumar, P.; Thakur, N.; Kumar, K.; Jeet, K. Photodegradation of Methyl Orange Dye by Using Azadirachta indica and Chemically Mediated Synthesized Cobalt Doped α-Fe2O3 NPs through Co-precipitation Method. Mater. Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2023.01.257.Search in Google Scholar

31. Thakur, N.; Kumar, P.; Thakur, N.; Kumar, K.; Tapwal, A.; Sharma, P. A Review of New Developments in the Synthesis of CuO Nanoparticles via Plant Extracts for Enhancing the Photocatalytic Activity. Biomater. Polym. Horiz. 2022, 1 (4). https://doi.org/10.37819/bph.1.331.Search in Google Scholar

32. Ravichandran, H.; Irusan, B.; Balaraman, S.; Govindasamy, M.; Krishnamoorthy, S.; Elayaperumal, M. Microwave-assisted Synthesis and Characterization of Fe3+–O–Fe3+ Sublattice Magnetic Moment Influencing Ferromagnetism Exhibited Erbium Orthoferrite Sublattice (ErFeO3) Perovskite Nanopowders. J. Alloys Compd. 2022, 890, 161825. https://doi.org/10.1016/j.jallcom.2021.161825.Search in Google Scholar

33. Wang, H.; Xu, X.; Yin, L.; Ning, P.; Chen, J.; Cao, J.; Zhang, Q.; Xie, H. SO2-induced Dual Active Sites Formation over VOx/Fe2O3 for Accelerating NH3 Selective Catalytic Reduction of NOx. Chem. Eng. J. 2023, 462, 142326. https://doi.org/10.1016/j.cej.2023.142326.Search in Google Scholar

34. Nekvapil, F.; Bortnic, R. A.; Leoştean, C.; Barbu-Tudoran, L.; Bunge, A. Characterization of the Lattice Transitions and Impurities in Manganese and Zinc Doped Ferrite Nanoparticles by Raman Spectroscopy and X-Ray Diffraction (XRD). Anal. Lett. 2022, 56, 42–52. https://doi.org/10.1080/00032719.2022.2083145.Search in Google Scholar

35. Das, P.; Sharma, N.; Puzari, A.; Kakati, D. K.; Devi, N. Synthesis and Characterization of Neem (Azadirachta indica) Seed Oil-Based Alkyd Resins for Efficient Anticorrosive Coating Application. Polym. Bull. 2021, 78, 457–479. https://doi.org/10.1007/s00289-020-03120-8.Search in Google Scholar

36. Hernandez-Trejo, A.; Rodríguez-Herrera, R.; Sáenz-Galindo, A.; López-Badillo, C. M.; Flores-Gallegos, A. C.; Ascacio-Valdez, J. A.; Estrada-Drouaillet, B.; Osorio-Hernández, E. Insecticidal Capacity of Polyphenolic Seed Compounds from Neem (Azadirachta indica) on Spodoptera frugiperda (JE Smith) Larvae. J. Environ. Sci. Health B 2021, 56, 1023–1030. https://doi.org/10.1080/03601234.2021.2004853.Search in Google Scholar PubMed

37. Gupta, R.; Pancholi, K.; De Sa, R.; Murray, D.; Huo, D.; Droubi, G.; White, M.; Njuguna, J. Effect of Oleic Acid Coating of Iron Oxide Nanoparticles on Properties of Magnetic Polyamide-6 Nanocomposite. Jom 2019, 71, 3119–3128. https://doi.org/10.1007/s11837-019-03622-5.Search in Google Scholar

38. Hu, F.; Yu, D.; Ye, M.; Wang, H.; Hao, Y.; Wang, L.; Li, L.; Han, X.; Peng, S. Lattice-matching Formed Mesoporous Transition Metal Oxide Heterostructures Advance Water Splitting by Active Fe–O–Cu Bridges. Adv. Energy Mater. 2022, 12, 2200067. https://doi.org/10.1002/aenm.202200067.Search in Google Scholar

39. Verma, D. K.; Sharma, A.; Awasthi, L.; Singh, H.; Kumar, P.; Rajput, P.; Sinha, A.; Chaubey, K. K.; Kumar, A.; Rai, N.; Bachheti, R. K. Recent Development and Importance of Nanoparticles in Disinfection and Pathogen Control. In Nanomaterials for Environmental and Agricultural Sectors; Springer Nature Singapore: Singapore, 2023; pp. 83–106.10.1007/978-981-99-2874-3_5Search in Google Scholar

40. Tadic, M.; Panjan, M.; Tadic, B. V.; Kralj, S.; Lazovic, J. Magnetic Properties of Mesoporous Hematite/alumina Nanocomposite and Evaluation for Biomedical Applications. Ceram. Int. 2022, 48, 10004–10014. https://doi.org/10.1016/j.ceramint.2021.12.209.Search in Google Scholar

41. Dhanda, N.; Kumari, S.; Kumar, R.; Kumar, D.; Sun, A. C. A.; Thakur, P.; Thakur, A. Influence of Ni over Magnetically Benign Co Ferrite System and Study of its Structural, Optical, and Magnetic Behaviors. Inorg. Chem. Commun. 2023, 151, 110569. https://doi.org/10.1016/j.inoche.2023.110569.Search in Google Scholar

42. Williams, H. M. The Application of Magnetic Nanoparticles in the Treatment and Monitoring of Cancer and Infectious Diseases. Biosci. Horiz. 2017, 10, hzx009. https://doi.org/10.1093/biohorizons/hzx009.Search in Google Scholar

43. Allwin Mabes Raj, A. F. P.; Bauman, M.; Dimitrušev, N.; Ali, L. M.; Onofre, M.; Gary-Bobo, M.; Durand, J. O.; Lobnik, A.; Košak, A. Superparamagnetic Spinel-Ferrite Nano-Adsorbents Adapted for Hg2+, Dy3+, Tb3+ Removal/Recycling: Synthesis, Characterization, and Assessment of Toxicity. Int. J. Mol. Sci. 2023, 24, 10072; https://doi.org/10.3390/ijms241210072.Search in Google Scholar PubMed PubMed Central

44. Sajjad, A.; Sajjad, H.; Hanif, S.; Rasheed, F.; Zia, M. Fabrication and Characterization of Wheat-Gluten/hematite Nanocomposite Film with Antibacterial and Antioxidant Properties for Biological Applications. Biomass Convers. Biorefin. 2023, 1–13. https://doi.org/10.1007/s13399-023-04178-w.Search in Google Scholar

45. Vaezi-Kakhki, A.; Asoodeh, A. Comparison of Different Methods for Synthesis of Iron Oxide Nanoparticles and Investigation of Their Cellular Properties, and Antioxidant Potential. Int. J. Pharm. 2023, 645, 123417. https://doi.org/10.1016/j.ijpharm.2023.123417.Search in Google Scholar PubMed

46. Memon, M. A.; Akhtar, M. W.; Khan, M. Y.; Khuhawar, M. Y.; Kim, Y. S. Augmented Catalytic Performance of PVA-Assisted Fe2O3 Nano Catalyst for Water Treatment Synthesized via Green Route. ECS J. Solid-State Sci. Technol. 2023, 12 (11), 117003; https://doi.org/10.1149/2162-8777/ad07f0.Search in Google Scholar

47. Ndou, N.; Rakgotho, T.; Nkuna, M.; Doumbia, I. Z.; Mulaudzi, T.; Ajayi, R. F. Green Synthesis of Iron Oxide (Hematite) Nanoparticles and Their Influence on Sorghum Bicolor Growth under Drought Stress. Plants 2023, 12 (7), 1425; https://doi.org/10.3390/plants12071425.Search in Google Scholar PubMed PubMed Central

48. Chihi, S.; Bouafia, A.; Meneceur, S.; Laouini, S. E.; Ahmed, R. Z. Effect of Precursor Concentration on the Bandgap Energy and Particles Size for Green Synthesis of Hematite α-Fe2O3 Nanoparticles by the Aqueous Extract of Moltkia Ciliata and Evaluation of the Antibacterial Activity. Biomass Convers. Biorefin. 2023, 1–14. https://doi.org/10.1007/s13399-023-04739-z.Search in Google Scholar

49. Kumar, S.; Korra, T.; Thakur, R.; Arutselvan, R.; Kashyap, A. S.; Nehela, Y.; Chaplygin, V.; Minkina, T.; Keswani, C. Role of Plant Secondary Metabolites in Defence and Transcriptional Regulation in Response to Biotic Stress. Plant Stress 2023, 100154. https://doi.org/10.1016/j.stress.2023.100154.Search in Google Scholar

50. Park, K. The Role of Dietary Phytochemicals: Evidence from Epidemiological Studies. Nutrients 2023, 15, 1371. https://doi.org/10.3390/nu15061371.Search in Google Scholar PubMed PubMed Central

51. Das, B. R.; Jena, S.; Dhal, J. P. Ag Doped α-Fe2O3 Nanoparticles: Synthesis, Characterization and Application as Heterogeneous Photocatalyst for Removal of Organic Dye from Aqueous Media without Any Oxidizing Agents. J. Indian Chem. Soc. 2021, 98 (11), 100214. https://doi.org/10.1016/j.jics.2021.100214.Search in Google Scholar

52. Algarni, S. A.; Aman, S.; Ahmad, N.; Khan, S. A.; Farid, H. M. T.; Taha, T. A. M. Processing of Nb Doped Hematite for Visible Light Photocatalytic Reduction of Noxious Methylene Blue. Optik 2023, 171097. https://doi.org/10.1016/j.ijleo.2023.171097.Search in Google Scholar

53. Maqbool, S.; Ahmed, A.; Mukhtar, A.; Jamshaid, M.; Rehman, A. U.; Anjum, S. Efficient Photocatalytic Degradation of Rhodamine B Dye Using Solar Light-Driven La˗ Mn Co-doped Fe2O3 Nanoparticles. Environ. Sci. Pollut. Res. 2023, 30 (3), 7121–7137. https://doi.org/10.1007/s11356-022-22701-w.Search in Google Scholar PubMed

54. Iqbal, T.; Khan, M. A. R.; Batool, S. K.; Shafique, M.; Waheed, A.; Wee, M. M. R.; Iqbal, Q. Synthesis of Hematite (α-Fe2O3) Nanoparticles by a Liquid-phase Microplasma-Assisted Electrochemical Process for Photocatalytic Activity. Phys. Scr. 2023, 98 (4), 045810; https://doi.org/10.1088/1402-4896/acbeec.Search in Google Scholar

55. Ganie, A. S.; Bashar, N.; Bano, S.; Hijazi, S.; Sultana, S.; Sabir, S.; Khan, M. Z. Development and Application of Redox Active GO Supported CeO2/In2O3 Nanocomposite for Photocatalytic Degradation of Toxic Dyes and Electrochemical Detection of Sulfamaxole. Surf. Interfaces 2023, 38, 102774. https://doi.org/10.1016/j.surfin.2023.102774.Search in Google Scholar

56. Kumar, P.; Kumar, S.; Tapwal, A.; Thakur, N. Chemical/green Synthesized Cobalt/copper-Doped α-Fe2O3 Nanoparticles: Potential for Environmental Remediation. J. Mater. Res. 2024, 1–14. https://doi.org/10.1557/s43578-023-01274-5.Search in Google Scholar

57. Thakur, N.; Thakur, N.; Kumar, K. Phytochemically and PVP Stabilized TiO2 Nanospheres for Enhanced Photocatalytic and Antioxidant Efficiency. Mater. Today Commun. 2023, 35, 105587. https://doi.org/10.1016/j.mtcomm.2023.105587.Search in Google Scholar

58. Thakur, N.; Thakur, N.; Kumar, K.; Kumar, A. Tinospora Cordifolia Mediated Eco-Friendly Synthesis of Cobalt Doped TiO2 NPs for Degradation of Organic Methylene Blue Dye. Mater. Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2023.01.253.Search in Google Scholar

59. Mishra, S.; Acharya, R. Recent Updates in Modification Strategies for Escalated Performance of Graphene/MFe2O4 Heterostructure Photocatalysts towards Energy and Environmental Applications. J. Alloys Compd. 2023, 170576. https://doi.org/10.1016/j.jallcom.2023.170576.Search in Google Scholar

60. Alenad, A. M.; Waheed, M. S.; Aman, S.; Ahmad, N.; Khan, A. R.; Khosa, R. Y.; Ansari, M. Z.; Khan, S. A.; Farid, H. M. T.; Taha, T. A. M. Visible Light Driven Ni Doped Hematite for Photocatalytic Reduction of Noxious Methylene Blue. Mater. Res. Bull. 2023, 165, 112306. https://doi.org/10.1016/j.materresbull.2023.112306.Search in Google Scholar

61. Kumar, P.; Tapwal, A.; Kumar, S.; Thakur, N. Improved Photocatalytic and Free Radical Scavenging Studies of Synthesized Polymer PVP/Azadirachta indica Leave Extract-Mediated Ni-Zn Doped Hematite Nanoparticles. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2024, 15 (2), 025014; https://doi.org/10.1088/2043-6262/ad50bb.Search in Google Scholar

62. Yang, J.; Zhou, J.; Huang, Y.; Tong, Y. Lanthanide-based Dual Modulation in Hematite Nanospindles for Enhancing the Photocatalytic Performance. ACS Appl. Nano Mater. 2022, 5 (6), 8557–8565. https://doi.org/10.1021/acsanm.2c01979.Search in Google Scholar

63. Emre, A. L. P. Comparative Study of Improvement of Hematite as Visible Light-Driven Photocatalyst by Doping with Zinc and Copper. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2023, 11 (1), 502–512; https://doi.org/10.29130/dubited.1051644.Search in Google Scholar

64. Kumar, P.; Pathak, D.; Thakur, N. Trimetallic Doped Hematite (α-Fe2O3) Nanoparticles Using Biomolecules of Azadirachta indica Leaf Extract for Photocatalytic Dye Removal: Insights into Catalyst Stability and Reusability. Emergent Mater. 2024, 1–17. https://doi.org/10.1007/s42247-024-00742-w.Search in Google Scholar

65. Ramprasath, R.; Manikandan, V.; Aldawood, S.; Sudha, S.; Cholan, S.; Kannadasan, N.; Sampath, S.; Gokul, B. Polyol-assisted Hydrothermal Synthesis of Mn-Doped α-Fe2O3 (MFO) Nanostructures: Spin Disorder-Induced Magnetism and Photocatalytic Properties. Environ. Res. 2022, 214, 113866. https://doi.org/10.1016/j.envres.2022.113866.Search in Google Scholar PubMed

66. Thakur, N.; Kumar, P. Effect of Shape and Size on Synthesized Triple (Co/Ni/Zn) Doped α-Fe2O3 Nanoparticles on Their Photocatalytic and Scavenging Properties. Int. J. Nanosci. 2024, 2450010. https://doi.org/10.1142/S0219581X24500108.Search in Google Scholar

67. Dotaniya, M. L.; Meena, V. D.; Saha, J. K.; Dotaniya, C. K.; Mahmoud, A. E. D.; Meena, B. L.; Meena, M. D.; Sanwal, R. C.; Meena, R. S.; Doutaniya, R. K.; Solanki, P.; Lata, M.; Rai, P. K. Reuse of Poor-Quality Water for Sustainable Crop Production in the Changing Scenario of Climate. Environ. Dev. Sustain. 2022, 1–32. https://doi.org/10.1007/s10668-022-02365-9.Search in Google Scholar PubMed PubMed Central

68. Shang, Z.; Li, M.; Zhang, W.; Cai, S.; Hu, X.; Yi, J. Analysis of Phenolic Compounds in Pickled Chayote and Their Effects on Antioxidant Activities and Cell Protection. Food Res. Int. 2022, 157, 111325. https://doi.org/10.1016/j.foodres.2022.111325.Search in Google Scholar PubMed

69. Abd-ElGawad, A. M.; Elshamy, A. I.; Elgorban, A. M.; Hassan, E. M.; Zaghloul, N. S.; Alamery, S. F.; El Gendy, A. E. N. G.; Elhindi, K. M.; Ei-Amier, Y. A. Essential Oil of Ipomoea Carnea: Chemical Profile, Chemometric Analysis, Free Radical Scavenging, and Antibacterial Activities. Sustainability 2022, 14, 9504; https://doi.org/10.3390/su14159504.Search in Google Scholar

70. Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The Role of Plant-derived Natural Antioxidants in Reduction of Oxidative Stress. BioFactors 2022, 48, 611–633. https://doi.org/10.1002/biof.1831.Search in Google Scholar PubMed

Received: 2023-11-20
Accepted: 2024-06-28
Published Online: 2025-01-22
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0343/pdf
Scroll to top button