Home Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of graphene additive on microstructure and properties of MAO coatings on 6063 aluminum alloy

  • Hong Gao , Chao Wang , Bo Jiang and Renguo Song ORCID logo EMAIL logo
Published/Copyright: December 28, 2023
Become an author with De Gruyter Brill

Abstract

The micro-arc oxidation process is used to improve the properties of 6063 aluminum alloy by forming coatings on the surface of the alloy, in order to further enhance the features of the basic micro-arc oxidation coatings, graphene was added into the silicate alkaline electrolyte. The addition of the graphene influences the surface morphologies, thickness, element distributions, phase compositions, wear resistance and corrosion resistance of the formed coatings. They were studied by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, friction and wear testing and an electrochemical workstation. The results show that the microstructure and properties of the coating were modified with the increase of graphene concentration. However, when too much graphene was added, the performance of the coating became worse.


Corresponding author: Renguo Song, School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou, Jiangsu 213164, P.R. China; and Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Renguo Song: program design and guide Hong Gao: experiments, processed data, wrote papers Chao Wang: experiments Bo Jiang: Microscopic analysis.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The financial aids of the National Natural Science Foundation of China under grant No51871031 and the Natural Science Foundation of JiangSu Province under grant No. BK20211061.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Sobolev, A., Bograchev, D., Zinigrad, M., Borodianskiy, K. Ceram. Int. 2022, 48, 10990. https://doi.org/10.1016/j.ceramint.2021.12.318.Search in Google Scholar

2. Sobolev, A., Peretz, T., Borodianskiy, K. J. Alloys Compd. 2021, 869, 159309. https://doi.org/10.1016/J.JALLCOM.2021.159309.Search in Google Scholar

3. Chen, Y., Wu, L., Yao, W., Zhong, Z., Pan, F. Surf. Coat. Technol. 2021, 413, 127083. https://doi.org/10.1016/J.SURFCOAT.2021.127083.Search in Google Scholar

4. Vakili-Azghandi, M., Fattah-alhosseini, A., Keshavarz, M. K. Measurement 2018, 124, 252–259. https://doi.org/10.1016/j.measurement.2018.04.038.Search in Google Scholar

5. Fattah-alhosseini, A., Vakili-Azghandi, M., Keshavarz, M. Acta Metall. Sin. 2016, 29, 274–281. https://doi.org/10.1007/s40195-016-0384-3.Search in Google Scholar

6. Hu, Y. L., Wang, Z. Q., Ai, J. Y., Bu, S. C., Liu, H. W. Coatings 2021, 11, 230. https://doi.org/10.3390/COATINGS11020230.Search in Google Scholar

7. Wang, C. Y., Ma, R., Du, A., Fan, Y. Z., Zhao, X., Cao, X. M. Surf. Coat. Technol. 2022, 432, 128099. https://doi.org/10.1016/J.SURFCOAT.2022.128099.Search in Google Scholar

8. Bai, Z. G., Min, X. T. Hot Work. Technol. 2015, 44, 12. https://doi.org/10.14158/j.cnki.1001-3814.2015.06.004.Search in Google Scholar

9. Chu, C. L., Han, X., Bai, J., Xue, F., Chu, P. K. Trans. Nonferrous Met. Soc. China 2014, 24, 1058. https://doi.org/10.1016/S1003-6326(14)63162-9.Search in Google Scholar

10. Mordike, B. L., Ebert, T. Mater. Sci. Eng., A 2001, 302, 37. https://doi.org/10.1016/s0921-5093(00)01351-4.Search in Google Scholar

11. Madhavi, Y., Krishna, L. R., Narasaiah, N. Int. J. Fatigue 2021, 142, 105965. https://doi.org/10.1016/j.ijfatigue.2020.105965.Search in Google Scholar

12. Sun, H. O., Li, L. C., Wang, Z. Y., Liu, B., Wang, M., Yu, Y. L. J. Chem. 2020, 2020, 1. https://doi.org/10.1155/2020/6082812.Search in Google Scholar

13. Zong, Y., Song, R. G., Hua, T. S., Cai, S. W. Int. J. Mater. Res. 2020, 111, 11. https://doi.org/10.3139/146.111871.Search in Google Scholar

14. Wang, R. T., Xu, H., Yao, Z. P., Li, C. X., Jiang, Z. H. Appl. Sci. 2020, 19, 6779. https://doi.org/10.3390/app10196779.Search in Google Scholar

15. Tang, M. Q., Li, W. P., Liu, H. C., Zhu, L. Q. Appl. Surf. Sci. 2012, 258, 5869. https://doi.org/10.1016/j.apsusc.2012.02.124.Search in Google Scholar

16. Allen, M. J., Tung, V. C., Kaner, R. B. Chem. Rev. 2010, 110, 132. https://doi.org/10.1021/cr900070d.Search in Google Scholar PubMed

17. Liu, W., He, W., Jiang, H. Y., Wang, Q., Lin, Y. J. Mater. 2021, 30, 4162. https://doi.org/10.1007/S11665-021-05727-Y.Search in Google Scholar

18. Geim, A. K. Sci 2009, 324, 1530. https://doi.org/10.1126/science.1158877.Search in Google Scholar PubMed

19. Fattah-Alhosseini, A., Molaei, M., Nouri, M., Babaei, K. Appl. Surf. Sci. 2021, 6, 100140. https://doi.org/10.1016/j.apsadv.2021.100140.Search in Google Scholar

20. Babaei, K., Fattah-Alhosseini, A., Molaei, M. Surf 2020, 21, 100677. https://doi.org/10.1016/j.surfin.2020.100677.Search in Google Scholar

21. Fattah-Alhosseini, A., Chaharmahali, R. FlatChem 2021, 27, 100241. https://doi.org/10.1016/j.flatc.2021.100241.Search in Google Scholar

22. Feng, C. J., Hu, S. L., Jiang, Y. F., Jiang, Y. F., zhou, Y. Rare Met. Mater. Eng. 2013, 12, 24274. https://doi.org/10.1016/S1875-5372(14)60032-1.Search in Google Scholar

23. Xiang, N., Song, R. G., Wang, C., Mao, Q. Z., Ge, Y. J., Ding, J. H. Corros. Eng., Sci. Technol. 2016, 51, 146. https://doi.org/10.1179/1743278215Y.0000000040.Search in Google Scholar

24. Wang, D. D., Liu, X. T., Wang, Y., Zhang, Q., Li, D. L., Liu, X. R., Su, H., Zhang, Y. H., Yu, S. X., Shen, D. J. Surf. Coat. Technol. 2020, 402, 126349. https://doi.org/10.1016/j.surfcoat.2020.126349.Search in Google Scholar

25. Xu, B., He, Y. F., Wang, X. Z., Gan, W. M. J. Mater. Res. 2020, 111, 463. https://doi.org/10.3139/146.111910.Search in Google Scholar

26. Feng, C. J., Hu, S. L., Jiang, Y. F., Zhou, Y. Rare Met. Mater. Eng. 2013, 42, 2427. https://doi.org/10.1016/S1875-5372(14)60032-1.Search in Google Scholar

27. Wu, Z. D., Yao, Z. P., Jiang, Z. H. Rare Met. 2008, 27, 55. https://doi.org/10.1016/S1001-0521(08)60030-3.Search in Google Scholar

28. Ghali, E., Dietzel, W., Kainer, K. U. J. Mater. 2004, 13, 7. https://doi.org/10.1361/10599490417533.Search in Google Scholar

29. Qiu, Z. Z., Wang, R., Zhang, Y. S., Qu, Y. F., Wu, X. H. J. Mater. Eng. Perform. 2015, 24, 1483. https://doi.org/10.1007/s11665-015-1422-4.Search in Google Scholar

30. Lim, T. S., Ryu, H. S., Hong, S. H. Corros. Sci. 2012, 62, 104. https://doi.org/10.1016/j.corsci.2012.04.043.Search in Google Scholar

31. Liang, J., Srinivasan, P. B., Blawert, C., Dietzel, W. Corros. Sci. 2009, 51, 2483. https://doi.org/10.1016/j.electacta.2009.02.004.Search in Google Scholar

32. Zhuang, J. J., Song, R. G., Xiang, N., Lu, J. P., Xiong, Y. Int. J. Mater. Res. 2017, 108, 758. https://doi.org/10.3139/146.111541.Search in Google Scholar

33. Tang, H., Gao, Y. J. Alloys Compd. 2016, 688, 699. https://doi.org/10.1016/j.jallcom.2016.07.079.Search in Google Scholar

Received: 2021-12-06
Accepted: 2023-03-13
Published Online: 2023-12-28
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8683/html?lang=en
Scroll to top button