Abstract
This study presents a novel process to synthesize curcumin nanoparticles from fresh turmeric. An ultrasonic-assisted cajeput oil in water emulsion technique was used to synthesize nanocurcumin. The prepared nanocurcumin was spherical with an average size of 47 nm and size distribution of 5–80 nm. The synthesized nanocurcumin showed improved aqueous-phase solubility, and it was used as a reducing agent and stabilizer for biosynthesizing silver nanoparticles. Furthermore, the X-ray diffraction pattern of the silver nanoparticles showed four distinct diffraction peaks at 38.3°, 44.6°, 65.1°, and 78.1° corresponding to the lattice planes of face-centered cubic silver ((111), (200), (220), and (311)). Transmission electron microscopy analysis indicated the average size and maximum size distribution (80 %) of the silver nanoparticles were 10.9 nm and 5–15 nm, respectively. UV–visible spectroscopy measurement of samples indicated the localized surface plasmon resonance absorbance of an aqueous dispersion of silver nanoparticles at 406 nm. Zeta potential analysis revealed a negative charge with a magnitude of −27.2 mV, which indicated higher aqueous dispersion stability of the silver nanoparticles prepared from nanocurcumin. The nanoparticles showed antibacterial activity against Vibrio parahaemolyticus.
- 
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
 - 
Research funding: The study was financed by the scientific research projects of Hue University under Number DHH2020-02-136, and the University of Agriculture and Forestry, Hue University under the Strategic Research Group Program, Grant No. HUAF2021-NCM-02.
 - 
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
 
References
1. Gupta, A., Briffa, S. M., Swingler, S., Gibson, H., Kannappan, V., Adamus, G., Kowalczuk, M., Martin, C., Radecka, I. Biomacromolecules 2020, 21, 1802–1811. https://doi.org/10.1021/acs.biomac.9b01724.Suche in Google Scholar PubMed PubMed Central
2. Vuong, L. D. Nanoparticles for the improved crop production. In Nanotechnology for Agriculture: Crop Production & Protection; Springer: Singapore, 2019; pp. 85–106. https://doi.org/10.1007/978-981-32-9374-8_5.Suche in Google Scholar
3. Vuong, L. D., Quang, D. A., Chuc, N. H., Le Van, L., Bao, V. V. Q. Chapter 4 – natural gums as a sustainable source for synthesizing copper nanoparticles. In Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems; Elsevier, 2022; pp. 81–98. https://doi.org/10.1007/978-981-32-9374-8_5.Suche in Google Scholar
4. Quoc, B. V. V., Dai, V. L., Yves, W. Nanomater. Energy 2021, 10, 111–117. https://doi.org/10.1680/jnaen.20.00052.Suche in Google Scholar
5. Jamila, N., Khan, N., Hwang, I. M., Saba, M., Khan, F., Amin, F., Khan, S. N., Atlas, A., Javed, F., Minhaz, A., Ullah, F. Int. J. Biol. Macromol. 2020, 147, 853–866. https://doi.org/10.1016/j.ijbiomac.2019.09.245.Suche in Google Scholar PubMed
6. Rasheed, T., Bilal, M., Iqbal, H. M. N., Li, C. Colloids Surf. B Biointerfaces 2017, 158, 408–415. https://doi.org/10.1016/j.colsurfb.2017.07.020.Suche in Google Scholar PubMed
7. Singh, R., Hano, C., Nath, G., Sharma, B. Biomolecules 2021, 11, 299. https://doi.org/10.3390/biom11020299.Suche in Google Scholar PubMed PubMed Central
8. Rasheed, T., Bilal, M., Li, C., Nabeel, F., Khalid, M., Iqbal, H. M. N. J. Photochem. Photobiol. B Biol. 2018, 181, 44–52. https://doi.org/10.1016/j.jphotobiol.2018.02.024.Suche in Google Scholar PubMed
9. Bao, V. V. Q., Vuong, L. D., Luan, L. V. Nano Life 2018, 08, 1850003. https://doi.org/10.1142/S1793984418500034.Suche in Google Scholar
10. Bilal, M., Rasheed, T., Iqbal, H. M. N., Li, C., Hu, H., Zhang, X. Int. J. Biol. Macromol. 2017, 105, 393–400. https://doi.org/10.1016/j.ijbiomac.2017.07.047.Suche in Google Scholar PubMed
11. Bilal, M., Zhao, Y., Rasheed, T., Ahmed, I., Hassan, S. T. S., Nawaz, M. Z., Iqbal, H. M. N. Int. J. Environ. Res. Publ. Health 2019, 16, 598. https://doi.org/10.3390/ijerph16040598.Suche in Google Scholar PubMed PubMed Central
12. Vogel, A., Pelletier, J. J. Pharm. 1815, 1, 289–300.Suche in Google Scholar
13. Zielińska, A., Alves, H., Marques, V., Durazzo, A., Lucarini, M., Alves, T. F., Morsink, M., Willemen, N., Eder, P., Chaud, M. V., Severino, P., Santini, A., Souto, E. B. Medicina 2020, 56, 336. https://doi.org/10.3390/medicina56070336.Suche in Google Scholar PubMed PubMed Central
14. Sharifi, S., Zununi Vahed, S., Ahmadian, E., Maleki Dizaj, S., Abedi, A., Hosseiniyan Khatibi, S. M., Samiei, M. Phytother Res. 2019, 33, 2927–2937. https://doi.org/10.1002/ptr.6482.Suche in Google Scholar PubMed
15. Schraufstatter, E., Bernt, H. Nature 1949, 164, 456. https://doi.org/10.1038/164456a0.Suche in Google Scholar PubMed
16. Lo Cascio, F., Marzullo, P., Kayed, R., Palumbo Piccionello, A. Biomedicines 2021, 9, 173. https://doi.org/10.3390/biomedicines9020173.Suche in Google Scholar PubMed PubMed Central
17. Gupta, S. C., Patchva, S., Koh, W., Aggarwal, B. B. Clin. Exp. Pharmacol. Physiol. 2012, 39, 283–299. https://doi.org/10.1111/j.1440-1681.2011.05648.x.Suche in Google Scholar PubMed PubMed Central
18. Moghaddasi, F., Housaindokht, M. R., Darroudi, M., Bozorgmehr, M. R., Sadeghi, A. LWT 2018, 92, 92–100.10.1016/j.lwt.2018.02.023Suche in Google Scholar
19. Khan, M. J., Shameli, K., Sazili, A. Q., Selamat, J., Kumari, S. Molecules 2019, 24, 719. https://doi.org/10.3390/molecules24040719.Suche in Google Scholar PubMed PubMed Central
20. Soto-Quintero, A., Guarrotxena, N., García, O., Quijada-Garrido, I. Sci. Rep. 2019, 9, 1187. https://doi.org/10.1038/s41598-019-54752-4.Suche in Google Scholar PubMed PubMed Central
21. Shameli, K., Ahmad, M. B., Zamanian, A., Sangpour, P., Shabanzadeh, P., Abdollahi, Y., Zargar, M. Int. J. Nanomed. 2012, 7, 5603–5610. https://doi.org/10.2147/ijn.S36786.Suche in Google Scholar
22. Hettiarachchi, S. S., Dunuweera, S. P., Dunuweera, A. N., Rajapakse, R. M. G. ACS Omega 2021, 6, 8246–8252. https://doi.org/10.1021/acsomega.0c06314.Suche in Google Scholar PubMed PubMed Central
23. Hemlata, Meena, P. R., Singh, A. P., Tejavath, K. K. ACS Omega 2020, 5, 5520–5528. https://doi.org/10.1021/acsomega.0c00155.Suche in Google Scholar PubMed PubMed Central
24. Islam, N. U., Amin, R., Shahid, M., Amin, M. Arab. J. Chem. 2019, 12, 3977–3992. https://doi.org/10.1016/j.arabjc.2016.02.017.Suche in Google Scholar
25. Mahiuddin, M., Saha, P., Ochiai, B. Nanomaterials 2020, 10, 1777. https://doi.org/10.3390/nano10091777.Suche in Google Scholar PubMed PubMed Central
26. Venugopal, N., Mitra, A. Appl. Surf. Sci. 2013, 285, 357–372. https://doi.org/10.1016/j.apsusc.2013.08.062.Suche in Google Scholar
27. Verma, A. D., Jain, N., Singha, S. K., Quraishi, M. A., Sinha, I. J. Chem. Sci. 2016, 128, 1871–1878. https://doi.org/10.1007/s12039-016-1189-7.Suche in Google Scholar
28. Abdellah, A. M., Sliem, M. A., Bakr, M., Amin, R. M. Future Med. Chem. 2018, 10, 2577–2588. https://doi.org/10.4155/fmc-2018-0152.Suche in Google Scholar PubMed
29. Devaraj, P., Kumari, P., Aarti, C., Renganathan, A. J. Nanotechnol. 2013, 2013, 598328. https://doi.org/10.1155/2013/598328.Suche in Google Scholar
30. Yang, X. X., Li, C. M., Huang, C. Z. Nanoscale 2016, 8, 3040–3048. https://doi.org/10.1039/C5NR07918G.Suche in Google Scholar
31. Umoren, S. A., Obot, I. B., Gasem, Z. M. J. Mater. Environ. Sci. 2014, 5, 907–914.Suche in Google Scholar
32. Liu, Y. S., Chang, Y. C., Chen, H. H. J. Food Drug Anal. 2018, 26, 649–656. https://doi.org/10.1016/j.jfda.2017.07.005.Suche in Google Scholar PubMed PubMed Central
33. Corsino, D. C., Balela, M. D. L. IOP Conf. Ser. Mater. Sci. Eng. 2017, 264, 012020. https://doi.org/10.1088/1757-899x/264/1/012020.Suche in Google Scholar
34. Fahmy, H. M., Mosleh, A. M., Elghany, A. A., Shams-Eldin, E., Abu Serea, E. S., Ali, S. A., Shalan, A. E. RSC Adv. 2019, 9, 20118–20136. https://doi.org/10.1039/C9RA02907A.Suche in Google Scholar
35. Soni, V. K., Shukla, D., Kumar, A., Vishvakarma, N. K. Int. J. Biochem. Cell Biol. 2020, 123, 105752. https://doi.org/10.1016/j.biocel.2020.105752.Suche in Google Scholar PubMed
36. Azizi, M., Sedaghat, S., Tahvildari, K., Derakhshi, P., Ghaemi, A. Inorg. Nano-Metal Chem. 2020, 50, 429–436. https://doi.org/10.1080/24701556.2020.1716010.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
 - Original Papers
 - A micromechanical approach to elastic modulus of long-term aged chicken feather fibre/poly(lactic acid) biocomposites
 - Biosynthesis of silver nanoparticles using nanocurcumin extracted from fresh turmeric of Vietnam
 - Effects of high current density on the characteristics of zinc films electroplated in ethaline electrolyte
 - Effect of applying air pressure during wet etching of micro copper PCB tracks with ferric chloride
 - Effect of atmosphere on oxidation behavior of novel high Mn steel bearing Cr during heat treatment
 - Effect of microstructural evolution during dry sliding on the corrosion behaviour of martensitic stainless steel
 - First-principles calculations to investigate switching from semiconducting to metallic with enhanced mechanical and optoelectronic properties of CsPbCl3 under pressure
 - News
 - DGM – Deutsche Gesellschaft für Materialkunde
 
Artikel in diesem Heft
- Frontmatter
 - Original Papers
 - A micromechanical approach to elastic modulus of long-term aged chicken feather fibre/poly(lactic acid) biocomposites
 - Biosynthesis of silver nanoparticles using nanocurcumin extracted from fresh turmeric of Vietnam
 - Effects of high current density on the characteristics of zinc films electroplated in ethaline electrolyte
 - Effect of applying air pressure during wet etching of micro copper PCB tracks with ferric chloride
 - Effect of atmosphere on oxidation behavior of novel high Mn steel bearing Cr during heat treatment
 - Effect of microstructural evolution during dry sliding on the corrosion behaviour of martensitic stainless steel
 - First-principles calculations to investigate switching from semiconducting to metallic with enhanced mechanical and optoelectronic properties of CsPbCl3 under pressure
 - News
 - DGM – Deutsche Gesellschaft für Materialkunde