Abstract
Three steels were designed based on HSLA-100 with additional levels of Mn, Ni, Cr and Cu. The steels were prepared by controlled rolling and tempered at temperatures in range of 550–700°C. The continuous cooling time curves were shifted to longer times and lower temperatures with the increased tendency for the formation of martensite at lower cooling rates. The microstructures revealed that controlled rolling results in austenite with uniform fine grain structure. The steel with the highest amount of Mn showed the greatest strength after tempering at 750 °C. The top strength was attributed to the formation of Cu-rich particles. The steel with 1.03 wt.% Mn, tempered at 650 °C exhibited the best Charpy impact toughness at –85°C. On the other hand, the steel that contained 2.11 wt.% Mn and tempered at 700 °C showed the highest yield strength of 1 097.5 MPa (∼159 ksi) and an impact toughness of 41.6 J at –85°C.
References
[1] Z.J. Xie, Y.P. Fang, G. Han, H. Guo, R.D.K. Misra, C.J. Shang: Mater. Sci. Eng. A 618 (2014) 112. https://doi.org/10.1016/j.msea.2014.08.072 DOI:10.1016/j.msea.2014.08.07210.1016/j.msea.2014.08.072Suche in Google Scholar
[2] Y. Cao, X. Wan, F. Zhou, Y. Shen, Y. Liu, G. Li, K. Wu: In. J. Mater. Res., 112 (2021) 98. https://doi.org/10.1515/ijmr-2020–7842 DOI:10.1515/ijmr-2020-784210.1515/ijmr-2020-7842Suche in Google Scholar
[3] A. Ghosh, B. Mishra, S. Das, S. Chatterjee: Mater. Sci. Eng. A 396 (2005) 320. https://doi.org/10.1016/j.msea.2005.01.050 DOI:10.1016/j.msea.2005.01.05010.1016/j.msea.2005.01.050Suche in Google Scholar
[4] B. Shahriari, R. Vafaei, E. Mohammad Sharifi, Kh. Farmanesh:. Mater. Res. 108 (2017) 715. https://doi.org/10.3139/146.111531 .DOI:10.3139/146.11153110.3139/146.111531Suche in Google Scholar
[5] S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bha, D.N. Seidman, M.E. Fine: Metal. Mater. Trans. A 39 (2008) 363. https://doi.org/10.1007/s11661–007–9417-x DOI:10.1007/s11661-007-9417-x10.1007/s11661-007-9417-xSuche in Google Scholar
[6] S.W. Thompson: Mater. Sci. Eng. A 711 (2018) 424. https://doi.org/10.1016/j.msea.2017.11.022 DOI:10.1016/j.msea.2017.11.02210.1016/j.msea.2017.11.022Suche in Google Scholar
[7] Z.Y. Xie, X.P. Ma, C.J. Shang, X.M. Wang, S.V. Subramanian: Mater. Sci. Eng. A 641 (2015) 37. DOI:10.1016/j.msea.2015.05.10110.1016/j.msea.2015.05.101Suche in Google Scholar
[8] D. Jain, D. Isheim, A.H. Hunter, D.N. Seidman: Metal. Mater. Trans. A 47 (2016) 3860. DOI:10.1007/s11661-016-3569-510.1007/s11661-016-3569-5Suche in Google Scholar
[9] S. Liu, H. Tan, H. Guo, C. Shang, R.D.K. Misra: Mater. Sci. Eng. A 676 (2016) 510. https://doi.org/10.1016/j.msea.2016.08.126.DOI:10.1016/j.msea.2016.08.12610.1016/j.msea.2016.08.126Suche in Google Scholar
[10] J. Hu, L.X. Du, G.S. Sun, H. Xie, R.D.K. Misra: Scr. Mater. 104 (2015) 87. DOI:10.1016/j.scriptamat.2015.04.00910.1016/j.scriptamat.2015.04.009Suche in Google Scholar
[11] X. Li, P. Wu, R. Yang, S. Zhao, S. Zhang, S. Chen, X. Wang: Mater. Des. 115 (2017) 165. DOI:10.1016/j.matdes.2016.11.01710.1016/j.matdes.2016.11.017Suche in Google Scholar
[12] S. Zheng, C. Davis, M. Strangwood: Mater. Charact. 95 (2014) 94. DOI:10.1016/j.matchar.2014.06.00810.1016/j.matchar.2014.06.008Suche in Google Scholar
[13] D.B. Park, M.Y. Huh, J.H. Shim, J.Y. Suh, K.H. Lee, W.S. Jung: Mater. Sci. Eng. A 560 (2013) 528. DOI:10.1016/j.msea.2012.09.09810.1016/j.msea.2012.09.098Suche in Google Scholar
[14] B.K. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakon-daiah: Mater. Sci. Eng. A 527 (2010) 1595. DOI:10.1016/j.msea.2009.10.04910.1016/j.msea.2009.10.049Suche in Google Scholar
[15] J. Calvo, L. Collins, S. Yue: Int. J. Mater. Res. 105 (2014) 537. DOI:10.3139/146.11106210.3139/146.111062Suche in Google Scholar
[16] A. Momeni, H. Arabi, A. Rezaei, H. Badri, S.M. Abbasi: Mater. Sci. Eng. A 528 (2011) 2158. DOI:10.1016/j.msea.2010.11.06210.1016/j.msea.2010.11.062Suche in Google Scholar
[17] M.C. Somani, D.A. Porter, L.P. Karjalainen, P.K. Kantanen, J.I. Kömi, D.K. Misra: Int. J. Mater. Res. 110 (2019) 183. DOI:10.3139/146.11174410.3139/146.111744Suche in Google Scholar
[18] Gh. Khalaj, M.-J. Khalaj: Int. J. Mater. Res. 104 (2013) 697. DOI:10.3139/146.11091010.3139/146.110910Suche in Google Scholar
[19] Y.C. Lin Y C, X.M. Chen, G. Liu: Mater. Sci. Eng. A 527 (2018) 6980. DOI:10.1016/j.msea.2010.07.06110.1016/j.msea.2010.07.061Suche in Google Scholar
[20] G. Mandal, S.K. Ghosh, D. Chakrabarti, S. Chatterjee: Metallogr. Microstruct. Anal., 7 (2018) 222. DOI:10.1007/s13632-018-0432-710.1007/s13632-018-0432-7Suche in Google Scholar
[21] S.K. Dhua, A. Ray, D.S. Sarma: Mater. Sci. Eng. A 318 (2001) 197. DOI:10.1016/S0921-5093(01)01259-X10.1016/S0921-5093(01)01259-XSuche in Google Scholar
[22] A. Das, S.K. Das, S. Tarafder: Metall. Mater. Trans. A 40 (2009) 3138. DOI:10.1007/s11661-009-9999-610.1007/s11661-009-9999-6Suche in Google Scholar
[23] A. Ghosh, S. Chatterjee: Sci. Eng. A 486 (2008) 152. DOI:10.1016/j.msea.2007.08.06210.1016/j.msea.2007.08.062Suche in Google Scholar
[24] J.Y. Yoo, W.Y. Choo, T. Park: ISIJ Int. 35 (1995) 1034. DOI:10.2355/isijinternational.35.103410.2355/isijinternational.35.1034Suche in Google Scholar
[25] M. Stadler, R. Schnitzer, M. Gruber, C. Hofer: Int. J. Mater. Res. Published online https://doi.org/10.1515/ijmr-2020–796210.1515/ijmr-2020-7962Suche in Google Scholar
[26] Y.W. Chen, B.M. Huang, Y.T. Tsai, S.P. Tsai, C.Y. Chen, J.R. Yang: Mater. Charact. 131 (2017) 298. DOI:10.1016/j.matchar.2017.07.02210.1016/j.matchar.2017.07.022Suche in Google Scholar
[27] F. Latourte, Z. Feinberg, L.F. Mori, G.B. Olson, H.D. Espinosa: Int. J. Fracture 162 (2010) 187. DOI:10.1007/s10704-010-9472-y10.1007/s10704-010-9472-ySuche in Google Scholar
[28] M. Katsumata, O. Ishiyama, T. Inoue, T. Tanaka: Mater. Trans. JIM 32 (1990) 715. DOI:10.2320/matertrans1989.32.71510.2320/matertrans1989.32.715Suche in Google Scholar
[29] Y.K. Lee: J. Mater. Sci. Lett., 21 (2002) 1253. [30] L. Qian, Q. Zhou, F. Zhang, J. Meng, M. Zhang, Y. Tian: Mater. Des. 39 (2012) 264. DOI:10.1023/A:101655511923010.1023/A:1016555119230Suche in Google Scholar
[30] L. Qian, Q. Zhou, F. Zhang, J. Meng, M. Zhang, Y. Tian: Mater. Des. 39 (2012) 264. DOI:10.1016/j.matdes.2012.02.05310.1016/j.matdes.2012.02.053Suche in Google Scholar
[31] S.G. Hashemi, B. Eghbali: Mater. Sci. Eng. A 705 (2017) 32. DOI:10.1016/j.msea.2017.07.09410.1016/j.msea.2017.07.094Suche in Google Scholar
[32] C.H. Young, H.K.D.H. Bhadeshia: Mater. Sci. Technol. 10 (1994) 209. DOI:10.1179/mst.1994.10.3.20910.1179/mst.1994.10.3.209Suche in Google Scholar
[33] H.K.D.H. Bhadeshia: Le J. de Physique IV 7(C5) (1994), C5– 367. DOI:10.1051/jp4 :199755810.1051/jp4:1997558Suche in Google Scholar
[34] A. Rajasekhar, G.M. Reddy, T. Mohandas, V.S.R. Murti: Mater. Des. 30 (2009) 1612. DOI:10.1016/j.matdes.2008.07.04210.1016/j.matdes.2008.07.042Suche in Google Scholar
[35] J. Banas, A. Mazurkiewicz: Mater. Sci. Eng. A 277 (2000) 183. DOI:10.1016/S0921-5093(99)00530-410.1016/S0921-5093(99)00530-4Suche in Google Scholar
[36] S. Okaguchi, T. Hashimoto: Trans. Iron Steel Inst. Japan 27 (1987) 467. DOI:10.2355/isijinternational1966.27.46710.2355/isijinternational1966.27.467Suche in Google Scholar
[37] G. Khalaj, H. Yoozbashizadeh, A. Khodabandeh, A. Nazari: Neural Comp. Appl. 22 (2013) 879. https://dx.doi.org/10.1007/s00521–011–0779-z10.1007/s00521-011-0779-zSuche in Google Scholar
[38] B. Pawłowski: J. Achiev. Mater. Manufac. Eng. 49 (2011) 331. https://doi.org/10.1007/s00521–011–0779-z10.1007/s00521-011-0779-zSuche in Google Scholar
[39] H. Kim, J. Inoue, M. Okada, K. Nagata: ISIJ Int. 57 (2012) 2229. DOI:10.2355/isijinternational.ISIJINT-2017-21210.2355/isijinternational.ISIJINT-2017-212Suche in Google Scholar
[40] A.I. Zaky: J. Mater. Eng. Perform. 15 (2017) 651. DOI:10.1361/105994906X15081210.1361/105994906X150812Suche in Google Scholar
[41] L.J. Cuddy: Metall. Trans. A 12 (1981) 1313. DOI:10.1007/BF0264234510.1007/BF02642345Suche in Google Scholar
[42] R. Gupta, S.K. Panthi, S. Srivastava: Rev. Adv. Mater. Sci. 46 (2016) 70.Suche in Google Scholar
[43] K. Nagai: J. Mater. Process. Technol. 117 (2001) 329. DOI:10.1016/S0924-0136(01)00789-010.1016/S0924-0136(01)00789-0Suche in Google Scholar
[44] G.R. Ebrahimi, A. Momeni, Sh. Kazemi, H. Alinejad: Vacuum 142 (2017) 135. DOI:10.1016/j.vacuum.2017.05.01010.1016/j.vacuum.2017.05.010Suche in Google Scholar
[45] V.R. Mattes: Microstructure and Mechanical Properties of. HSLA-100 Steel, M.Sc. Thesis, Naval Postgraduate School Monteray CA, (1990).Suche in Google Scholar
[46] C. Garcia-Mateo, F.G. Caballero, T. Sourmail, V. Smanio, C.G. de Andres: Int. J. Mater. Res. 105 (2014) 725. https://doi.org/10.3139/146.111090 DOI:10.3139/146.11109010.3139/146.111090Suche in Google Scholar
[47] H. Tamehiro, N. Yamada, H. Matsuda: Trans. Iron Steel Inst. Japan 25 (1985) 54. DOI:10.2355/isijinternational1966.25.5410.2355/isijinternational1966.25.54Suche in Google Scholar
[48] M. Meuser, F. Grimpe, S. Meimeth, C.J. Heckmann, C. Träger: Mater. Sci. Forum 500 (2005) 565. DOI: 10.4028/www.scientific.net/MSF.500-501.56510.4028/www.scientific.net/MSF.500-501.565Suche in Google Scholar
[49] K. Hulka: In 1st International Conference on Super-High Strength Steels, Rome, Italy, November 2–4 (2005) 11–24.Suche in Google Scholar
[50] H. Tervo, A. Kaijalainen, T. Pikkarainen, S. Mehtonen, D. Porter: Mater. Sci. Eng. A 697 (2017) 184. DOI:10.1016/j.msea.2017.05.01310.1016/j.msea.2017.05.013Suche in Google Scholar
[51] R.J. Klassen, M.N. Bassim, M.R. Bayoumi, H.G.F. Wilsdorf: Mater. Sci. Eng. 80 (1986) 25. https://doi.org/10.1016/0025–5416(86)90299–510.1016/0025-5416(86)90299-5Suche in Google Scholar
[52] A. Ghosh, S. Sahoo, M. Ghosh, R.N. Ghosh, D. Chakrabarti: Mater. Sci. Eng. A 613 (2014) 37. DOI:10.1016/j.msea.2014.06.09110.1016/j.msea.2014.06.091Suche in Google Scholar
[53] S. Maropoulos, N. Ridley: Mater. Sci. Eng. A 384 (2004) 64. DOI:10.1016/j.msea.2004.05.02310.1016/j.msea.2004.05.023Suche in Google Scholar
[54] R.D.K. Misra, G.C. Weatherly, J.E. Hartmann, A.J. Boucek: Mater. Sci. Technol. 17 (2001) 1119. DOI:10.1179/02670830110151104010.1179/026708301101511040Suche in Google Scholar
[55] S. Vervynckt, K. Verbeken, B. Lopez, J.J. Jonas: Int. Mater. Rev. 57 (2012) 187. DOI:10.1179/1743280411Y.000000001310.1179/1743280411Y.0000000013Suche in Google Scholar
[56] S.K. Dhua, D. Mukerjee, D.S. Sarma: Metall. Mater. Trans. A 32 (2001) 2259. DOI:10.1007/s11661-001-0201-z10.1007/s11661-001-0201-zSuche in Google Scholar
[57] B. An, S. Ranganathan: ISIJ Int. 44 (2004) 115. DOI:10.2355/isijinternational.44.11510.2355/isijinternational.44.115Suche in Google Scholar
[58] S. Panwar, D.B. Goel, O.P. Pandey, K.S. Prasad: Bull. Mater. Sci. 26 (2004) 441. DOI:10.1007/BF0271119010.1007/BF02711190Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Contents
- Original Contributions
- Thermophysical properties of the TiAl-2Cr-2Nb alloy in the liquid phase measured with an electromagnetic levitation device on board the International Space Station, ISS-EML
- Effect of phosphorus on the density and molar volume of Al–Si alloy without solidification shrinkage
- Anisotropy in tensile behavior of an extruded Mg-4.50Zn-1.13Ca (wt.%) alloy
- Influence of alloying systems on the properties of single crystal nickel-based superalloys
- Design of a novel HSLA steel with a combination of high strength (140–160 ksi) and excellent toughness
- Solvothermal synthesis and characterization of well-dispersed cerium-doped Y2SiO5 phosphor particles
- Evaluation of effect of synthesis parameters on the morphology of nano-structures of magnesium oxide coated with carbon
- Review
- Weldability and machinability of the dissimilar joints of Ti alloy and stainless steel – A review
- Notifications
- NEWS
Artikel in diesem Heft
- Contents
- Original Contributions
- Thermophysical properties of the TiAl-2Cr-2Nb alloy in the liquid phase measured with an electromagnetic levitation device on board the International Space Station, ISS-EML
- Effect of phosphorus on the density and molar volume of Al–Si alloy without solidification shrinkage
- Anisotropy in tensile behavior of an extruded Mg-4.50Zn-1.13Ca (wt.%) alloy
- Influence of alloying systems on the properties of single crystal nickel-based superalloys
- Design of a novel HSLA steel with a combination of high strength (140–160 ksi) and excellent toughness
- Solvothermal synthesis and characterization of well-dispersed cerium-doped Y2SiO5 phosphor particles
- Evaluation of effect of synthesis parameters on the morphology of nano-structures of magnesium oxide coated with carbon
- Review
- Weldability and machinability of the dissimilar joints of Ti alloy and stainless steel – A review
- Notifications
- NEWS